Dynamics modelling of the extremal control system operation with extremum memorization

System analysis, control and data processing


Аuthors

Vataeva E. Y.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

e-mail: 89217450004@bk.ru

Abstract

Landing is the most complicated and potentially dangerous operation mode of the aircraft. It is well known, that in the landing mode the aircraft behavior differs from its behavior in the other modes. It relates to its dynamic characteristics as well. The study of landing dynamics is characterized by complexity and specificity, associated with significant instability of the considered modes related to the essential changes in flight parameters. The main feature of the landing mode is the aircraft proximity to the Earth surface, and the need to fly at low speeds, implementing rather complex evolutions. The article considers the issue of dynamics modeling of nonlinear automatic control systems (ACS) in transient conditions. A system with extreme characteristics is selected as an object, namely the extremum seeking system with extremum memorization.

The main task of the extremal control system is the automatic maintenance of the optimal value of the regulating action, which ensures an extreme value of the coordinates, object parameters, or any indicator of the process efficiency during uncontrolled and unknown changes in the properties of the control object itself and its operating conditions.

It must be borne in mind that the interaction of the braking wheel with the surface along which it rolls is of an extreme character. The feature of the developed system is that the aircraft behavior on the left slope of the characteristic differs greatly from its behavior on the right slope. The left slope of the characteristic characterizes a stable movement of the system, while the right slope corresponds to an unstable state of the system. This article addresses the issue of developing an extremum seeking control (ESC) system with extremum memorization in “Matlab/Simulink”. A semi-natural system ECS was developed on the NI ELVIS – II platform in conjunction with the LabVIEW graphical programming language. This complex can be employed for studying and developing regulators for various braking systems.

Keywords:

extremal control systems with extremum memorization, modeling, NI ELVIS - II platform, mathematical modeling, graphic modeling

References

  1. Nikitin A.V., Shishlakov V.F. Parametricheskii sintez nelineinykh sistem avtomaticheskogo upravleniya (Parametric synthesis of nonlinear automatic control systems), Saint-Petersburg, GUAP, 2003, 358 p.

  2. Shishlakov V.F., Shishlakov A.V., Timofeev S.S. Sintez SAU pri razlichnykh vidakh approksimatsii nelineinykh kharakteristik: teoriya i praktika (Synthesis of automatic control systems for various types of approximation of nonlinear characteristics: theory and practice), Saint-Petersburg, GUAP, 2017, 151 p.

  3. Ibragimov D.N. Trudy MAI, 2015, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69797

  4. Uryupin I.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93440

  5. Haskara I., Ozguner U., Winkelman J. Extremum control for optimal operating point determination and set point optimization via sliding modes, Journal Dynamic System, Measurement and Control, 2000, vol. 122, pp. 719 – 724.

  6. Li E.B., Markus L. Osnovy teorii optimal’nogo upravleniya (Fundamentals of the optimal control theory), Moscow, Nauka, 1972, 576 p.

  7. Hassan K. Khalil Nonlinear Systems, USA, Pearson Education Limited, 2013, 560 p.

  8. Shankar Sarty. Nonlinear Systems: Analysis, Stability, and Control, USA, Berkeley Publ., 1999, 675 p.

  9. Slotine J.-J. E. Applied Nonlinear Control, USA, Prentice-Hall Publ., 1991, 259 p.

  10. Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal’noe upravlenie (Optimal control), Moscow, Nauka, 1979, 430 p.

  11. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko B.F. Matematicheskaya teoriya optimal’nykh protsessov (Mathematical theory of optimal processes), Moscow, Nauka, 1969, 393 p.

  12. Boltyanskii V.G. Matematicheskie metody optimal’nogo upravleniya (Mathematical methods of optimal control), Moscow, Nauka, 1969, 408 p.

  13. Shishlakov V.F., Chubraeva L.I. Informatsionno-upravlyayushchie sistemy, 2014, no. 2, pp. 2 – 8.

  14. Shishlakov V.F., Tsvetkov S.A., Shishlakov D.V. Sintez parametrov nepreryvnykh i impul’snykh mnogosvyaznykh sistem avtomaticheskogo upravleniya (Parameters synthesis of continuous and pulsed multitasking automatic control systems), Saint-Petersburg, SPbGUAP, 2009, 179 p.

  15. Yushkevich A.V., Sazonov I.S., Mel’nikov A.S., Petrenko M.L., Amel’chenko N.P. Vestnik Belorussko-Rossiiskogo universiteta, 2014, no. 2 (43), available at: https://cyberleninka.ru/article/n/tormoznye-sistemy-dvuhkolesnyh-transportnyh-sredstv

  16. Shumilov I.S. Mashiny i Ustanovki: proektirovanie, razrabotka i ekspluatatsiya, 2016, no. 1, pp. 24 – 42.

  17. Besekerskii, V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of automatic control systems), Moscow, Nauka, 1972, 768 p.

  18. Vataeva E.Yu., Shishlakov V.F., Shishlakov D.V., Reshetnikova N.V. Zavalishinskie chteniya’18 (Sankt-Petersburg, 16-20 April 2018), Sbornik dokladov, Saint-Petersburg, GUAP, 2018, pp. 114 – 118.

  19. Shishlakov V.F., Krivolapchuk I.G., Vataeva E.Yu. Mekhatronika, avtomatika i robototekhnika, 2017, no. 1, pp. 130 – 132.

  20. NI ELVIS II Series Quick Start Guide, National Instruments, December 2015.

  21. Vataeva E.Yu., Krivolapchuk I.G., Shishlakov V.F. Avtomatizirovannoe proektirovanie v mashinostroenii, 2017, no. 5, pp. 90 – 96.

  22. Vataeva E.Yu., Krivolapchuk I.G., Shishlakov V.F. Zavalishinskie chteniya’18 (Sankt-Petersburg, 16-20 April 2018). Sbornik dokladov, Saint-Petersburg, GUAP, 2018, pp. 108 – 113.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход