Comparison of combined kinetic-hydrodynamic models of different orders on the example of the Couette flow


DOI: 10.34759/trd-2020-110-8

Аuthors

Berezko M. E.*, Nikitchenko Y. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: maxberezko@yandex.ru
**e-mail: nikitchenko7@yandex.ru

Abstract

Boundary conditions formulating on a solid surface for moment equations systems represents significant complexities.

A strict formulation of such boundary conditions was obtained only for the Navier-Stokes-Fourier model (NSF) being an incomplete system of second-order moment equations. Under high non-equilibrium conditions, the NSF model with its corresponding boundary conditions significantly overestimates the coefficient of friction on the streamlined surface. Previously, the authors proposed a combined flow model supplementing the NSF model in the near-wall region with a kinetic equation with appropriate boundary conditions. This combination of hydrodynamic and kinetic models allowed significantly improving the solution in the near-wall region.

The presented article proposes a combined physical and mathematical flow model, employing model kinetic equation for polyatomic gases within the Knudsen layer, and the third-order system of moment equations (M3) within the rest of the computational domain. In the region of models concatenation approximating distribution function, representing a decomposition of the Maxwell equilibrium distribution function by the thermal velocity degrees, is being restored. Parameters of decomposition (non-equilibrium stresses and third-order moments) are determined in the M3 model approximation.

The example of the test problem solving for Couette flow demonstrates that this option of the combined model yields smooth solutions in the field of models’ concatination and allows a satisfactory accuracy of the flow field description in a wide range of Knudsen and Mach numbers. Both options of the combined model were compared. Analysis of the results revealed M3 hydrodynamic component employing in the combined model allowed enhancing the acceptable range of Knudsen numbers approximately by an order, while the Mach numbers could be increased up to hypersonic values.

Keywords:

moment equations, kinetic equation, nonequilibrium flows, Couette flow

References

  1. Gred G. Mekhanika, 1952, no. 4, pp. 71 – 97.

  2. Kogan M.N. Dinamika razrezhennogo gaza (Rarefied gas dynamics), Moscow, Nauka, 1967, 440 p.

  3. Barantsev R.G. Vzaimodeistvie razrezhennykh gazov s obtekaemymi poverkhnostyami (Interaction of rarefied gases with streamlined surfaces), Moscow, Nauka, 1975, 343 p.

  4. Sakabekov A.C. Matematicheskii sbornik, 1992, vol. 183, no. 9, pp. 67 – 88.

  5. Becker M., Boyland D.E. Flow field and surface pressure measurements in the fullymerged and transition flow regimes on a cooled sharp flat plate, Rarefied Gas Dynamics, Suppl. 4, 1967, vol. 2, pp. 993 – 1014.

  6. Tannehill J.C., Mohling R.A., Rakich J.V. Numerical computation of the hypersonicrarefied flow near the sharp leading edge of a flat plate, AIAA Journal, 1973, https://doi.org/10.2514/6.1973-200

  7. Kuznetsov M.M., Kuleshova Yu.D., Reshetnikova Yu.G., Smotrova L.V. Trudy MAI, 2017, no. 95, URL: http://trudymai.ru/eng/published.php?ID=83571

  8. Berezko M.E., Nikitchenko Yu.A., Tikhonovets A.V. Trudy MAI, 2017, no. 94, URL: http://trudymai.ru/eng/published.php?ID=80922

  9. Nikitchenko Yu.A., Popov S.A., Tikhonovets A.V. Matematicheskoe modelirovanie, 2019, vol. 31, no. 2, pp. 18 – 32.

  10. Nikitchenko Yu.A. Trudy MAI, 2014, no. 77, URL: http://trudymai.ru/eng/published.php?ID=52938

  11. Nikitchenko Yu.A. Modeli neravnovesnykh techenii (Unbalanced flows flows models), Moscow, Izd-vo MAI, 2013, 160 p.

  12. Nikitchenko Yu.A. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2017, vol. 57, no. 11, pp. 1882 – 1894.

  13. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational techniques in fluid dynamics), Moscow, Mir, 1991, vol. 1, 502 p.

  14. Anderson D., Tannekhill Dzh., Pletcher R. Vychislitel’naya gidromekhanika i teploobmen (Computational fluid mechanics and heat transfer), Moscow, Mir, 1990, vol. 1, 384 p.

  15. Pirumov U.G., Roslyakov G.S Chislennye metody gazovoi dinamiki (Numerical methods of gas dynamics), Moscow, Vysshaya shkola, 1987, 232 p.

  16. Khatuntseva O.N. Trudy MAI, 2019, no. 104, URL: http://trudymai.ru/eng/published.php?ID=102091

  17. Koshmarov Yu.A., Ryzhov Yu.A. Prikladnaya dinamika razrezhennogo gaza (Applied rarefied gas dynamics), Moscow, Mashinostroenie, 1977, 184 p.

  18. Alofs H., Springer G.S. Cylindrical Couette flow experiments in the transition regime, The Physics of Fluids, 1971, vol. 14, no. 2, pp. 298 – 305.

  19. Degond P., Jin S., Mieussens L. A smooth transition model between kinetic hydrodynamic equations, Journal of Computational Physics, 2005, vol. 209, pp. 665 – 694

  20. Crouseilles N., Degond P., Lemou M. A hybrid kinetic/fluid model for solving the gas dynamics Boltzmann–BGK equation, Journal of Computational Physics, 2004, vol. 199, pp. 776 – 808.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход