Computational algorithm for calculating composition of combustion products of hydrocarbon fuels in the presence of a condensed phase
DOI: 10.34759/trd-2020-112-4
Аuthors
*, ***e-mail: dmd.lqd@gmail.com
**e-mail: gidaspov@mai.ru
Abstract
The article describes the computational algorithm that allows computing the equilibrium composition of combustion products of hydrocarbon fuels in the presence of condensed components. The mixture of combustion products was considered as an isolated system of ideal gas without energy interaction and mass exchange with the environment. Numerical methods and computational algorithms, based on the thermodynamic potentials extremum search, are employed for the thermodynamic equilibrium search. The composition of the combustion products of hydrocarbon fuel in the air may include about 150 possible compounds of chemical elements C, H, O, N, Ar, with condensed phases of C(с) and H2O2(с) among them. The article presents specifics of the algorithm implementation with regard for thermodynamic functions at the temperature of the phase transition Tp.
Without this, in many cases, when the temperature value passes through the point T= Tp, the monotonous iterative process is disrupted, which may lead to the algorithm divergence. The results of numerical simulation of stationary equilibrium flow of combustion products of kerosene with the air in a Laval nozzle are compared with reference data. The effect of pressure on the composition of combustion products in excess of fuel was studied. Analysis of the computational results and reference data confirms the reliability of the developed algorithm. The impact of pressure (p = 1–100 atm) on the composition of combustion products in an adiabatic reactor with an excess of fuel was studied. It follows from the obtained results, that the condensed phase (p = 1–100 atm.) is a part of the combustion products at the air excess coefficient α < 0.36, the dependence of the soot concentration on the pressure changes qualitatively with the air excess coefficient changing.
Keywords:
physical gas dynamics, thermodynamic modeling, power plant, hydrocarbon fuel combustionReferences
-
Bratkov A.A., Seregin E.P., Gorenkov A.F., Chirkov A.M., Il’inskii A.A., Zrelov V.N. Khimmotologiya raketnykh i reaktivnykh topliv (Chemitology of rocket and jet fuels), Moscow, Khimiya, 1987, 304 p.
-
Alemasov V.E., Dregalin A.F., Kryukov V.G., Naumov V.I. Matematicheskoe modelirovanie vysokotemperaturnykh protsessov v energosilovykh ustanovkakh (Mathematical modeling of high-temperature processes in power plants), Moscow, Nauka, 1989, 256 p.
-
Siluyanova M.V., Chelebyan O.G. Trudy MAI, 2016, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69695
-
Pirumov U.G., Roslyakov G.S. Gazovaya dinamika sopel (Gas dynamics of nozzles), Moscow, Nauka, 1990, 368 p.
-
Gidaspov V.Yu., Severina N.S. Nekotorye zadachi fizicheskoi gazovoi dinamiki (Some problems of physical gas dynamics), Moscow, Izd-vo MAI, 2016, 195 p.
-
Gibbs D.V. Termodinamika, statisticheskaya fizika (Some problems of physical gas dynamics), Moscow, Nauka, 1982, 584 p.
-
Alemasov V.E., Dregalin A.F., Tishin A.P., Khudyakov V.A. Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya (Thermodynamic and thermophysical properties of combustion products), Moscow, VINITI, 1971, vol. 3, 350 p.
-
Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modeliroavnie v vysokotemperaturnykh neogranicheskikh sistemakh (Thermodynamic modeling in high-temperature neogranic systems), Moscow, Metallurgiya, 1994, pp. 45 – 47.
-
Belov G.V. Termodinamicheskoe modelirovanie: metody, algoritmy, programmy (Thermodynamic modeling: methods, algorithms, programs), Moscow, Nauchnyi mir, 2002, pp. 64 – 71 p.
-
Trusov B.G. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana, 2012, no. 1 (1), pp. 21.
-
Gidaspov V.Yu. Trudy MAI, 2011, no. 49, available at: http://trudymai.ru/eng/published.php?ID=28605&PAGEN_2=3
-
Gidaspov V.Yu. Trudy MAI, 2015, no. 83, available at: http://trudymai.ru/eng/published.php?ID=61826
-
Nazyrova R.R., Ponomarev N.B. Inzhenernyi zhurnal: nauka i innovatsii, 2013, no. 4, (16), pp. 48.
-
William R.S., Ronald W.M. Chemical Reaction Equilibrium Analysis: Theory and Algorithms, New York, John Wiley & Sons, 1982, 364 p.
-
Kryukov V.G., Abdullin A.L., Nikandrova M.V., Iskhakova R.L. Trudy MAI, 2019, no. 105, available at: http://trudymai.ru/eng/published.php?ID=104166
-
Holub R., Vonka P. The Chemical Euqilibria Of Gaseus Systems, Prague, D.Reidel Publishing Company, 1976, 279 p.
-
Meilanov R.P., Magomedov R.A. Thermodynamics in fractional calculus, Journal of Engineering physics and thermophysics, 2014, vol. 87, no. 6, pp. 1521 – 2531. DOI: 10.1007/s10891-014-1158-2
-
Greiner H. Computing complex chemical equilibria by generalized linear programming Mathematical and Computer Modelling, 1988, vol. 10, no. 7, pp. 529 – 550. DOI: 10.1016/0895-7177(88)90082-9
-
Nazyrova R.R. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76946
-
Nazyrova R.R. Matematicheskoe modelirovanie, 2018, vol. 30, no. 1, pp. 76 – 90.
-
Belov G.V. Zhurnal fizicheskoi khimii, 2019, vol. 93, no. 6, pp. 810 – 817.
-
Gurvich L.V., Veits I.V., Medvedev V.A. et al. Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic properties of individual substances), Moscow, Nauka, 1982, vol. 1, book 1, 495 p.
Download