Parameters formalization of adaptive protection system for automated communication control system
DOI: 10.34759/trd-2020-112-17
Аuthors
1*, 1**, 2***, 1****, 1*****1. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
2. The Military Academy of Strategic Rocket Troops after Peter the Great, 8, Karbysheva str., Balashikha, Moscow region, 143900, Russia
*e-mail: vfil10@mail.ru
**e-mail: 123andryb@mail.ru
***e-mail: khokhlach@mail.ru
****e-mail: alexbmstu.b@yandex.ru
*****e-mail: palber96@gmail.com
Abstract
The article analyzed the theoretical model of the system for protection of the automated communication control system (AССS) against accidental hazardous impacts, representing a threat to the aircraft control systems. The tasks for realizing systematic approach to solve the problem of ensuring the ACCS adaptive protection.
The simulation model for the AССS protection against hazardous impacts, employing the queueing theory, is considered. The article analyzed the properties of simulation modelling systems, namely GPSS World. The article presents also a mathematical model of the protection system and reviews the functions of its components.
The article used Kendal-Basharin representation for formal presentation of various options of the AССS protection organization against hazardous impacts. Model restrictions, which represent a function of loss for the untimely users requests compliance were considered
The task of the most rational organization of the ACCS functioning was put forward in the article.
From the performed analytical work the inferences were drawn that it was not rational to use the method of simple sorting of all possible options to obtain the optimal option of the ACCS adaptive protection system. There is a necessity to employ a combined algorithm of the directional search with the penalty of randomness together with static tests.
The topic of this work relevance is stipulated in the first place by the necessity to develop new methods and ways for the ACCS protection from the hazardous impacts, used for the aircraft control, for example, in case of the control interception prevention.
Keywords:
automated communications control system, protection system, malware, queue system, protection mechanism, servicing instruments, simulation, queueing theoryReferences
-
Avtomatizirovannye sistemy. Zashchita ot nesanktsionirovannogo dostupa k informatsii. Klassifikatsiya avtomatizirovannykh sistem i trebovaniya po zashchite informatsii. Rukovodyashchii dokument Gostekhkomissii Rossii ot 30.03.1992. (Automated systems. Protection against unauthorized access to information. Classification of the automated systems and information security requirement. The Guidance document of the State Technological Commission of Russia from 30.03.1992).
-
Kontseptsiya zashchity sredstv vychislitel'noi tekhniki i avtomatizirovannykh sistem ot nesanktsionirovannogo dostupa k informatsii. Rukovodyashchii dokument Gostekhkomissii Rossii ot 30.03.1992 (The concept of protection aids for computers and automated systems against unauthorized access to information / the Guidance document of State Technological Commission of Russia from 30.03.1992).
-
Solomatin M.S., Mitrofanov D.V. Trudy MAI, 2020, no. 110, available at: http://trudymai.ru/eng/published.php?ID=112926. DOI: 10.34759/trd-2020-110-16
-
Filatov V.I., Borukaeva A.O., Berdikov P.G. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100781
-
Bocharov P.P., Pechinkin A.V. Teoriya massovogo obsluzhivaniya (Queueing theory), Moscow, Izd-vo RUDN, 1995, 529 p.
-
Shraĭber T.Dzh. Modelirovanie na GPSS (Modeling with GPSS), Moscow, Mashinostroenie, 1980, 592 p.
-
Ovcharov L.A. Prikladnye zadachi teorii massovogo obsluzhivaniya (Applied Problems of Queueing Theory), Moscow, Mashinostroenie, 1969, 323 p.
-
Kleĭnrok L. Teoriya massovogo obsluzhivaniya (Queueing theory), Moscow, Mashinostroenie, 1979, 432 p.
-
Zhozhikashvili V.A., Vishnevskiĭ V.M. Seti massovogo obsluzhivaniya (Queueing Networks), Moscow, Radio i svyaz', 1988, 191 p.
-
Balakirskii V.B. Zashchita informatsii. «Konfident», 1996, no. 5, pp. 47 – 53.
-
Zaitsev M.A., Filatov V.I. and Borukaeva A.O. Analysis of the simulation modeling results of flow of negative impacts on adaptive system to ensure the sustainability of communication system, Journal of Physics: Conference Series, International Conference "High-tech and Innovations in Research and Manufacturing (HIRM-2019)," 6 May 2019, Krasnoyarsk, Russia.
-
Gerasimenko V.A., Diev S.I., Razmakhnin M.K. Zarubezhnaya radioelektronika, 1995, no. 9, pp. 48 – 75.
-
Panin S.D. Teoriya prinyatiya reshenii i raspoznavaniya obrazov (Theory of decision – making and pattern recognition), Moscow, Izd-vo MGTU im. N.E. Baumana, 2017, 239 p.
-
Greshilov A.A. Matematicheskie metody prinyatiya reshenii (Mathematical methods of decision-making), Moscow, Izd-vo MGTU im. N.E. Baumana, 2006, 584 p.
-
Venttsel' E.S. Teoriya veroyatnostei i ee inzhenernye prilozheniya (Law of probability and its engineering applications), Moscow, Vysshaya shkola, 2000, 480 p.
-
Ivchenko G.I., Medvedev Yu.I. Vvedenie v matematicheskuyu statistiku (Introduction to mathematical statistics), Moscow, Izd-vo LKI, 2010, 600 p.
-
Kobzar' A.I. Prikladnaya matematicheskaya statistika (Applied mathematical statistics), Moscow, FIZMATLIT, 2006, 816 p.
-
Orlov A.I. Teoriya prinyatiya reshenii (Decision-making theory), Moscow, Izd-vo Ekzamen, 2005, 656.
-
Britvin N.V., Meshavkin K.V. Trudy MAI, 2020, no. 110, available at: http://trudymai.ru/eng/published.php?ID=112881. DOI: 10.34759/trd-2020-110-14
-
Panteleev A.V., Luneva S.Yu. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111433
-
Golomazov A.V., Smirnov N.Ya., Iosifov P.A. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107900
- Golomazov A.V. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105738
Download