Method for finding approximate solutions of elasticity equations using spline wavelets


DOI: 10.34759/trd-2021-121-24

Аuthors

Deniskina G. Y.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: dega17@yandex.ru

Abstract

In the technique being proposed the spline wavelets, built on the basis of an uneven subdivision scheme and a lifting scheme, are being employed for solving problems of the elasticity theory. The choice of such basic functions is justified by the fact that wavelets have a number of advantages compared to other basic functions. For example, the lifting scheme application allows composing wavelets with the given properties, such as smoothness, compactness of the carrier, symmetry, the required number of zero moments, vanishing at the boundary of the domain of functions corresponding to non-boundary mesh vertices. Lately, the wavelet analysis is attracting a lot of attention from the researchers, scientists and specialists in various disciplines. There are several reasons why wavelets are being successfully applied in signal processing, information compression, methods for finding approximate solutions of differential and integral equations [1, 2], computer geometry [3-5]. Such reasons include the following. Firstly, the high rate of wavelet coefficients decay. This allows obtaining rather accurate function approximations employing only a small number of summands in the expansion. Secondly, availability of fast cascade algorithms for finding coefficients of the function wavelet expansion. Thirdly, many commonly used wavelets (such as spline wavelets and Daubechies wavelets) have a compact carrier. In the proposed technique, a wavelet-system, consisted of smooth functions with the compact carrier, was built using the lifting scheme and a mask.

Such wavelet systems may be employed for finding approximate solutions of partial differential equations and, as a consequence, they may be applied to solving problems of the elasticity theory. This application presupposes the use of the least squares method for finding approximate solutions of boundary value problems of mathematical physics [7].

Keywords:

wavelet analysis, spline wavelets, elasticity, lifting scheme, filter, scaling function

References

  1. Lepik U., Hein H. Haar wavelets with applications, Springer, 2014, 207 p.
  2. Bityukov Yu.I., Platonov E.N. Informatika i ee primeneniya, 2017, vol. 11, no. 4, pp. 94-103.
  3. Bityukov Yu.I., Akmaeva V.N. The use of wavelets in the mathematical and computer modelling of manufacture of the complex-shaped shells made of composite materials, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software, 2016, vol. 9, no. 3, pp. 5–16. DOI:10.14529/mmp160301
  4. Finkelstein A. Multiresolution curves, Proceedings ACM SIGGRAPH, 1994, pp. 261–268. DOI:10.1145/192161.192223
  5. Lounsbery M., DeRose T.D., Warren J. Multiresolution Surfaces of Arbitrary Topological Type, ACM Transactions on Graphics, 1997, vol. 16, no. 1, pp. 34-73.
  6. Frazier M.W. An introduction to wavelets through linear algebra, Springer. 1999, 503 p.
  7. Marchuk G.I., Akilov G.P. Metody vychislitel’noi matematiki, (Methods of Computational Mathematics), Moscow, Nauka, 1989, 744 p.
  8. Stinrod N., Eilenberg S. Osnovaniya algebraicheskoi topologii topologii (Algebraic Topology Foundations), Moscow, FIZMATLIT, 1958, 403 p.
  9. Cavaretta A.S., Dahmen W., Micchelli C.W. Stationary Subdivision Schemes, Memoirs of the American Mathematical Society, 1993, 186 p.
  10. Schroder P., Sweldens W. Spherical wavelets: efficiently representing functions on the sphere, Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, pp. 161–172.
  11. Stolnits E., DeRouz T., Salezin D. Veivlety v komp’yuternoi grafike (Wavelets in Computer Graphics), Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika», 2002, 272 p.
  12. Chigrinets E.G., Rodriges S.B., Zabolotnii D.I., Chotchaeva S.K. Trudy MAI, 2020, no. 116. URL: http://trudymai.ru/eng/published.php?ID=121111. DOI: 10.34759/trd-2021-116-17
  13. Lokteva N.A., Ivanov S.I. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=122234. DOI: 10.34759/trd-2021-117-05
  14. Maskaikin V.A. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119976. DOI: 10.34759/trd-2020-115-19
  15. Grigor’eva A.L., Khromov A.I., Grigor’ev Ya.Yu. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115109. DOI: 10.34759/trd-2020-111-1
  16. Kriven’ G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03
  17. Bityukov Yu.I., Deniskin Yu.I. Kompetentnost’, 2016, no. 9–10 (140-141), C. 73 — 79.
  18. Bityukov Yu.I., Kalinin V.A. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63148
  19. Bityukov Yu.I., Deniskin Yu.I., Deniskina G.Yu. Dinamika sistem, mekhanizmov i mashin, 2017, vol. 5, no. 4, pp. 117–127. DOI: 10.25206/2310-9793-2017-5-4-117-127
  20. Yamanaka Y., Todoroki A., Ueda M., Hirano Y., Matsuzaki R. Fiber line optimization in single ply for 3D printed composites, Open Journal of Composite Materials, 2016, vol. 6, no. 4, pp. 121–131. DOI: 10.4236/ojcm.2016.64012


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход