Unified software platform for develop of multi-agent models of orbital spacecrafts constellation


DOI: 10.34759/trd-2022-123-22

Аuthors

Privalov A. E.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

The article proposes a unified software platform designated for multi-agent models developing of orbital spacecraft constellation with various target purpose. Mathematical model of the software platform was developed at a high abstraction level, ensuring a generalized description of orbital spacecraft constellation operation, regardless its target purpose and life cycle stage. Besides, the basic systems of coordinates, employed in the spacecraft ballistics, as well as function of transition between them were defined in the space of the model functioning. These specifics allow considering this mathematical model as a basis for the multi-agent models of the orbital spacecraft constellations of various target purposes. The object-oriented model based on the mathematical model in the form classes diagram, ensuring the platform program realization, was developed in the UML language

The software platform has realized in the Python programming language in the form of two packages, containing a set of classes and methods for developing multi-agent models of orbital spacecraft constellation with certain target purpose. Besides the program platform, such model should include the following modules: user classes library, which are the platform subsidiary classes, reflecting the target purpose of the spacecraft constellation; the experiment control subsystem, and information analysis and display subsystem.

The unified software platform may be implemented as a core for the multi-agent models developing of orbital spacecraft constellations with various target purposes. A high abstraction level allows creating models with various degrees of detail, corresponding to the life cycle stage of the orbital spacecraft constellation, keeping herewith the unity of the model, methods and algorithms.

Keywords:

multi-agent model, orbital spacecraft constellation, object-oriented model, software platform

References

  1. Myrova L.O., Mentus O.V., Davydov A.B. et al. Trudy Nauchno-issledovatel’skogo instituta radio, 2021, no 2, pp. 36-45. DOI: 10.34832/NIIR.2021.5.2.005

  2. Carlos Álvaro Arroyo Parejo, Noelia Sánchez Ortiz, Raúl Domínguez González. Effect of mega-constellations on collision risk in space, Proc. 8th European Conference on Space Debris (virtual), Darmstadt, Germany, 20-23 April 2021, URL: http://conference.sdo.esoc.esa.int

  3. Harrison Krantz, Eric C. Pearce, Adam Block. Characterizing the All-Sky Brightness of Satellite Mega-Constellations and the Impact on Astronomy Research, Proceedings of the 2021 AMOS Conference. URL: https://arxiv.org/ftp/arxiv/papers/2110/2110.10578.pdf

  4. Afanas’ev I. Russkii kosmos, 2020, no. 8, pp. 8-19. URL: https://www.roscosmos.ru/media/pdf/russianspace/rk2020-08-single.pdf

  5. Stel’mashchuk A.S., Naboichenko S.A. III Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Sostoyanie i perspektivy razvitiya sovremennoi nauki po napravleniyu “ASU, informatsionno-telekommunikatsionnye sistemy: sbornik statei. Anapa, Voennyi innovatsionnyi tekhnopolis “ERA”, 2021, pp. 68-71.

  6. Zakovryashin A.I. Trudy MAI, no. 49. URL: http://trudymai.ru/eng/published.php?ID=28072&PAGEN_2=2

  7. Badalov A.Yu., Razumov D.A. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93491

  8. Sazonov A.A., Dzhamai V.V., Povekvechnykh S.A. Organizator proizvodstva, 2018, vol. 26, no. 1, pp. 84-92. DOI: 10.25065/1810-4894-2018-26-1-84-92

  9. GOST R 57700.37-2021. Komp’yuternye modeli i modelirovanie. Tsifrovye dvoiniki izdelii. Obshchie polozheniya (State Standard 57700.37-2021.Computer models and simulation. Digital twins of products. General provisions), Moscow, Rossiiskii institut standartizatsii, 2021, 16 p.

  10. Gusev P.Yu. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=101190

  11. Petrov A.V. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 22, no 10, pp. 56–66. DOI: 10.21285/1814-3520-2018-10-56-66

  12. Balukhto A.N. Sokolov B.V., Karsaev O.V. Desyataya vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti “Imitatsionnoe modelirovanie. Teoriya i praktika” (IMMOD-2021): trudy konferentsii, Saint Petersburg, Tsentr tekhnologii sudostroeniya i sudoremonta, 2021, pp. 95-104.

  13. Glaessgen E.H., Stargel D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles, Paper for the 53rd Structures, Structural Dynamics, and Materials Conference: Special Session on the Digital Twin, 2012, URL: https://ntrs.nasa.gov/api/citations/20120008178/downloads/20120008178.pdf. DOI:10.2514/6.2012-1818

  14. Sollogub A.V., Skobelev P.O., Simonova E.V. et al. Informatsionnoe obshchestvo, 2013, no. 1–2, pp. 58 – 69.

  15. Gorodetskii V.I., Karsaev O.V. Izvestiya YuFU. Tekhnicheskie nauki, 2017, no. 187, pp. 234–247. DOI: 10.18522/2311-3103-2017-1-234247

  16. Karsaev O.V. Izvestiya YuFU. Tekhnicheskie nauki, 2018, no. 1 (195), pp. 140–154. DOI: 10.23683/2311-3103-2018-1-140-154

  17. Fominov I.V., Privalov A.E. Kosmonavtika i raketostroenie, 2019, no. 1 (106), pp. 31-35.

  18. Privalov A.E., Fedyaev V.V., Bugaichenko P.Yu. Trudy konferentsii “Imitatsionnoe modelirovanie sistem voennogo naznacheniya IMSVN – 2020”, Saint Petersburg, VA MTO – AO “TsTSS”, 2021, pp. 219–228.

  19. Narimanov G.S., Tikhonravov M.K. Osnovy teorii poleta kosmicheskikh apparatov (Basics of Spacecraft Flight Theory), Moscow, Mashinostroenie, 1972, 608 p.

  20. Buch G., Rambo D., Yakobson I. Yazyk UML. Rukovodstvo pol’zovatelya (The Unified Modeling Language Usere Guide), Moscow, DMK Press, 2006, 496 p.

  21. Fedorov D.Yu. Programmirovanie na yazyke vysokogo urovnya Python (Python High-Level Programming: A textbook for universities), Moscow, Izdatel’stvo Yurait, 2021, 2010 p.

  22. NumPy User Guide. Release 1.22.0. URL: https://numpy.org/doc/stable/numpy-user.pdf

  23. Numpy and Scipy Documentation URL: https://docs.scipy.org/doc

  24. Datetime – Basic date and time types. Python Software Foundation, 2001-2022. URL: http://docs.python.org/3/library/datetime.html#module-datetime

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход