Non-stationary stress-strain state of the Timoshenko plate
DOI: 10.34759/trd-2022-125-05
Аuthors
1*, 2**1. PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia
2. ,
*e-mail: amtrak95@mail.ru
**e-mail: greghome@mail.ru
Abstract
Rapidly developing technical progress poses new, more complex and interesting tasks for engineers. This did not bypass the area of problems of the mechanics of a deformable solid body, and specifically the theory of plates. Plates and shells are extremely widely used in the construction of a wide variety of engineering structures.
At present, nonstationary problems in the theory of plates remain poorly studied.
In this work, vibrations of the Timoshenko plate under the action of non-stationary pressure are studied. investigated. The plate is assumed to be infinitely extended. To describe the movement of the plate, the well-known equations of the S.P. Timoshenko.
The solution method is based on the principle of superposition, according to which the normal displacements of the plate are a convolution of a given pressure with an influence function in spatial coordinates and time. The influence function for a plate is its formal displacements under the influence of a special type of pressure, namely, a unit concentrated force applied instantaneously in time. Mathematically, such a distribution is given by the product of the Dirac delta functions.
A spatial problem is considered in a Cartesian rectangular coordinate system. In this case, expansions in double trigonometric Fourier series and the integral Laplace transform in time are used to construct the influence function. The original coefficients of the expansion series are determined analytically using the second expansion theorem for the Laplace transform. Using the principle of superposition and the constructed original of the influence function, the solution of the problem of non-stationary oscillations of a rectangular Timoshenko plate, as well as displacement at a point under the influence of a distributed load, is obtained.
The paper investigates the response of the hinged Timoshenko plate to the impact of various non-stationary loads. For the solution, a numerical algorithm was developed and implemented on a computer. Examples of calculation of the deformed state of the plate are given.
Keywords:
Timoshenko plate, superposition method, influence functions, Fourier series, integral transformations, non-stationary loadReferences
- Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuous media), Moscow, Fizmatlit, 2004, 472 p.
- Gorshkov A.G., Tarlakovskii D.V. Nestatsionarnaya aerogidrouprugost’ tel sfericheskoi formy (Non-stationary aerohydroelasticity of spherical bodies), Moscow, Nauka. Fizmatlit, 1990, 264 p.
- Gorshkov A.G., Tarlakovskii D.V. Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami (Dynamic contact problems with moving boundaries), Moscow, Nauka. Fizmatlit, 1995, 352 p.
- Poruchikov V.B. Metody dinamicheskoi teorii uprugosti (Methods of dynamic theory of elasticity), Moscow, Nauka, 1986, 328 p.
- Slepyan L.I. Nestatsionarnye uprugie volny, (Non-stationary elastic waves), Leningrad, Sudostroenie, 1972, 374 p.
- Slepyan L.I., Yakovlev Yu.S. Integral’nye preobrazovaniya v nestatsionarnykh zadachakh mekhaniki (Integral transformations in non-stationary problems of mechanics), Leningrad, Sudostroenie, 1980, 344 p.
- Mikhailova E.Yu., Fedotenkov G.V. Nonstationary Axisymmetric Problem of the Impact of a Spherical Shell on an Elastic Half-Space (Initial Stage of Interaction), Mechanics of Solids, 2011, vol. 46, no. 2, pp. 239-247.
- Tarlakovskii D.V., Fedotenkov G.V. Two-dimensional nonstationary contact of elastic cylindrical or spherical shells, Journal of Machinery Manufacture and Reliability, 2014, vol. 43, no. 2, pp. 145-152. DOI: 10.3103/S1052618814010178.
- Tarlakovskii D.V., Fedotenkov G.V. Nonstationary 3d motion of an elastic spherical shell, Mechanics of Solids, 2015, vol. 50, no. 2, pp. 208-217. DOI: 10.3103/S0025654415020107.
- Tarlakovskii D.V., Fedotenkov G.V. Uchenye zapiski Kazanskogo universiteta. Seriya: fiziko-matematicheskie nauki, 2016, vol. 158(1), pp. 141–151.
- Zemskov A.V., Tarlakovskiy D.V. Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer, Journal of Applied Mechanics and Technical Physics, 2015, vol. 56, no. 6, pp. 1023-1030. DOI:10.1134/S0021894415060127
- Igumnov L.A., Tarlakovskii D.V., Zemskov A.V. A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer, Lobachevskii Journal of Mathematics, 2017, vol. 38, no. 5, pp. 808–817. DOI:10.1134/S1995080217050146
- Morgachev K.S. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2007, no. 2 (15), pp. 162-164.
- Il’inkova V.G., Petrushenko Yu.Ya. Trudy vtoroi vserossiiskoi nauchnoi konferentsii «Matematicheskie modeli mekhaniki, prochnost’ i nadezhnost’ konstruktsii. Matematicheskoe modelirovanie i kraevye zadachi» (1-3 iyunya 2005), Samara, SamGTU, 2005, pp. 134-137.
- Lazarev N.P. Prikladnaya mekhanika i tekhnicheskaya fizika, 2013, vol. 16, no.2 (54), pp. 98-108.
- Morgachev K.S., Fridman L.I. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2005, no. 34, pp. 68-71.
- Belov P.A., Nelyub V.A. Klei. Germetiki. Tekhnologii, 2015, no. 5, pp. 41-44.
- Bogachev I.V., Vatul’yan A.O., Dudarev V.V., Lapina P.A., Nedin R.D. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2017, vol. 17, no 4, pp. 419-430. DOI: 10.18500/1816-9791-2017-17-4-419-430
- Belkin A.E., Gavryushin S. Raschet plastin metodom konechnykh elementov (Calculation of plates by the finite element method), Moscow, Izd-vo MGTU im. N. E. Baumana, 2007, 232 p.
- Malinin G.V. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162655. DOI: 10.34759/trd-2021-121-08
- Firsanov V.V., Zoan K.Kh. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100589
- Erkov A.P., Dudchenko A.A. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100622
- Lokteva N.A., Ivanov S.I. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=122234. DOI: 10.34759/trd-2021-117-05
Download