Computational and experimental method of accounting for the dewatering system in the analysis of natural frequencies and waveforms


DOI: 10.34759/trd-2022-125-12

Аuthors

Gerasimchuk V. V.*, Zhiryakov A. V.**, Kuznetsov D. A.***, Telepnev P. P.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: gerasimchuk@laspace.ru
**e-mail: dep127180@laspace.ru
***e-mail: kuznetsovda@laspace.ru
****e-mail: telepnev@laspace.ru

Abstract

The article is devoted to the issue of ensuring the adequacy of the developed finite element models of oscillators to real samples of the spacecraft. In the computational and experimental method, the correction of KE models of dynamic systems minimizes the difference in values between the target characteristics of the real design and the computational model. The main stages of the method are:

  1. Development of a low-frequency dynamic circuit and finite element models of oscillators.
  2. Modal analysis of finite element models in order to determine the frequencies and forms of natural oscillations of oscillators.
  3. Experimental studies, for example, by the method of free oscillations to determine the natural frequencies and attenuation decrements of the product, in which a dewatering system is used to reproduce conditions identical to flight conditions.
  4. Verification of the adequacy of the developed finite element models to the test results. To do this, the model introduces additional reduced stiffness in the attachment points of the dewatering system.
  5. Correction (if necessary, for example, if the discrepancies between the values of the target characteristics of the simulation and the test results exceed 10...15%) of finite element models of a dynamic system by converting the original stiffness matrix by adding members of the stiffness matrix of the correcting finite element model.
  6. Refinement of the frequency spectrum of natural vibrations of the structure after the exclusion of elements of the dewatering system from the model.

The computational and experimental method of accounting for the dewatering system in the analysis of natural frequencies and waveforms allows us to obtain an adjusted model fully suitable for further development of spacecraft control algorithms on a system (dynamic circuit) as close as possible to the real one.

Using the example of two oscillators — a solar panel wing and a rod for carrying out scientific equipment — the article demonstrates practical and theoretical techniques for correcting finite element models using experimental research data.

Based on the results of the full-scale determination of the natural frequencies and vibration patterns of the structure, the correction of finite element models developed using the Femap with NX Nastran package was carried out, and the adequacy assessment (verification of the correspondence of the model to the real system) of the dynamic circuit of the spacecraft, taking into account the influence of the dewatering system. The achieved difference between the target characteristics of the real design and the calculated model was less than 9%.

Keywords:

natural oscillation frequency, solar battery, dynamic circuit, spacecraft

References

  1. Raushenbakh B.V., Tokar’ E.N. Upravlenie orientatsiei kosmicheskikh apparatov (Spacecraft orientation control), Moscow, Nauka, 1974, 600 p.
  2. Merkur’ev S.A. Inzhenernyi zhurnal: nauka i innovatsii, 2020, no. 6 (102). DOI: 10.18698/2308-6033-2020-6-1990
  3. Telepnev P.P., Kuznetsov D.A. Osnovy proektirovaniya vibrozashchity kosmicheskikh apparatov (Fundamentals of designing vibration protection of spacecraft: textbook), Moscow, Izd-vo MGTU im. N.E.Baumana, 2019, 102 p.
  4. Mashinostroenie. Entsiklopediya. T. 1-3. Kniga 1. Dinamika i prochnost’ mashin. Teoriya mekhanizmov i mashin (Mechanical engineering. Encyclopedia. Vol. 1-3. Book1. Dynamics and strength of machines. Theory of mechanisms and machines), Moscow, Mashinostroenie, 1994, 534 p.
  5. Pontryagin L.S. Obyknovennye differentsial’nye uravneniya (Ordinary differential equations), Moscow, Nauka, 1974, 331 p.
  6. Shimkovich D.G. Raschet konstruktsii v MSC.visualNastran dlya Windows (Calculation of structures in MSC.visualNastran for Windows), Moscow, DMK Press, 2004, 704 p.
  7. Mezhin V.S., Obukhov V.V. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 1 (4), pp. 86-91.
  8. Igolkin A.A., Safin A.I., Filipov A.G. Reshetnevskie chteniya, 2018, vol. 1, pp. 117-118.
  9. Gaidukova A.O., Belyanin N.A. Reshetnevskie chteniya, 2016, vol. 1, pp. 94-95.
  10. Kheilen V., Lammens S., Sas P. Modal’nyi analiz: teoriya i ispytaniya (Modal analysis: theory and tests), Moscow, OOO «Novatest», 2010, 319 p.
  11. Demenko O.G., Biryukov A.S., Bordadymov V.E. Vestnik NPO im. S.A. Lavochkina, 2022, no. 1, pp. 10-17. DOI: 10.26162/LS.2020.49.3.005
  12. Frolov K.V. Vibratsii v tekhnike: Spravochnik v 6-ti tomakh. T. 6. Zashchita ot vibratsii i udarov (Vibrations in technology: A handbook in 6 volumes. Vol. 6. Protection against vibrations and shocks), Moscow, Mashinostroenie, 1985, 456 p.
  13. Efanov V.V., Telepnev P.P., Kuznetsov D.A, Gerasimchuk V.V. Vestnik NPO im. S.A. Lavochkina, 2021, no. 3 (53), pp. 44-53. DOI: 10.26162/LS.2021.53.3.006
  14. Telepnev P.P., Zhirykov A.V., Gerasimchuk V.V. Calculating the Structural Vibration Loading Applied to Spacecraft Using Dynamic Analysis, Solar System Research, 2021, vol. 55, no. 7, pp. 698-703. DOI: 10.1134/S0038094621070200.
  15. Amir’yants G.A., Malyutin V.A. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100600
  16. Li S., Miskioglu I., Altan B.S. Solution to line loading of a semi-infinite solid in gradient elasticity, International Journal of Solids and Structures, 2004, no. 41, pp. 3395-3410. DOI:10.1016/j.ijsolstr.2004.02.010
  17. Lur’e S.A., Shramko K.K. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161414. DOI: 10.34759/trd-2021-120-02
  18. Liu X.N., Huang G.L., Hu, G.K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, Journal of the Mechanics and Physics of Solids, 2012, no. 60, pp. 1907-1921. DOI: 10.1016/j.jmps.2012.06.008
  19. Ma H.M., Gao X.-L., Reddy J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 2008, no. 56, pp. 3379-3391. DOI: 10.1016/j.jmps.2008.09.007
  20. Auffray N., Le Quang H., He H.C. Matrix representations for 3D strain-gradient elasticity, Journal of the Mechanics and Physics of Solids, 2013, no. 61, pp. 1202-1223. DOI: 10.1016/j.jmps.2013.01.003
  21. Gerasimchuk V.V., Telepnev P.P. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159787. DOI: 10.34759/trd-2021-119-09
  22. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158213. DOI: 10.34759/trd-2021-118-04
  23. Sysoev O.E., Dobryshkin A.Yu., Nein S.N. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90079
  24. ASTM E756-05. Stamdard Test Method for Measuring Vibration-Damping Properties of Materials. USA: ASTM International, 2017, 14 p.
  25. Firsanov V.V., Fam V.T. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104174
  26. Calucio A.C., Deu J.-F., Ohayon R. Finite Element Fomulation of Viscoelastic Sandwich Beams Using Fractional Derivation Operators, Computational Mechanics, 2004, vol. 33, issue 4, pp. 282-291.
  27. Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., Primakov P.V. Trudy MAI, 2016, no. 86. URL: https://trudymai.ru/eng/published.php?ID=65702

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход