New methods for constructing uniformly convergent trigonometric Fourier series


DOI: 10.34759/trd-2022-126-06

Аuthors

Kutysh I. I.

Limited Liability Company «ECOGIBENT», 125080, Moscow, Volokolamskoe shosse, 4

e-mail: ecogibent@mail.ru

Abstract

New results of studies of convergence of trigonometric Fourier series (TFS) with Fourier coefficients constructed by various methods are presented.

Using the concept of the square of the relative norm, the possibility of an analytical representation of a given TFS function is analyzed in detail and it is established that the cause of the divergence of the TFS with a sufficient increase in its degree is the occurrence of the Gibbs effect.

It is shown that when assessing the convergence of the TFS to its function as an independent change of the relative norm, instead of the current value of the degree of the series k, it is reasonable to use the current value of the generalized variable Θ=/n, which allows us to obtain more general results. Moreover, it is sufficient to control only the value of Θ, which determines the amount of calculations.

Recommendations are given for the construction of such Fourier coefficients that ensure uniform convergence of the TFS to its functions f(x) and the correct finding of their first derivatives free of the Gibbs effect.

Uniformly convergent TFSs constructed according to the proposed method are compared with the known Filon and Lanczos series.

In contrast to the Lanczos method, it is proposed to use variables σ-multipliers depending on the new variable ζ, which affects the rate of convergence of the series to its function f(x) and the accuracy of determining the first derivatives of the series without the occurrence of the Gibbs effect.

The results on the construction of uniformly convergent TFSs relate to any maximum-normalized periodic function f(x) in the interval [-π, π] satisfying Dirichlet conditions. Moreover, if the function f(x) has zeros at the ends of a given interval, then it is advisable to build a shortened TFS with decomposition only in terms of sinuses, hence a simpler TFS.

The proposed uniformly converging TFSs can find application in solving various problems of gas dynamics and heat and mass transfer described by partial differential equations.

Keywords:

Fourier coefficients, approximation nodes, Gibbs effect, series step, normalized function, convergence rate of Fourier series, uniformly converging trigonometric Fourier series, square of relative norm, generalized variable, quadrature formula, Fourier series with sine expansion only

References

  1. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki (Equations of mathematical physics), Moscow, Nauka, 1977, 736 p.
  2. Farlou S. Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov (Partial differential equations for scientists and engineers), Moscow, Mir, 1985, 384 p.
  3. Dzh. Lamli, Zh. Mat’e, D. Zhandel’ et al. Metody rascheta turbulentnykh techenii (Methods for calculating turbulent flows), Moscow, Mir, 1984, 464 p.
  4. Polyanin A.D., Zaitsev V.F. Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya (Handbook of nonlinear equations of mathematical physics: Exact solutions), Moscow, FIZMATLIT, 2002, 432 p.
  5. Edvards Ch.G., Penni D.E. Differentsial’nye uravneniya i kraevye zadachi: modelirovanie i vychislenie s pomoshch’yu Mathematica, Maple i MATLAB (Differential equations and boundary value problems: Modeling and calculation using Mathematica, Maple and MATLAB), Moscow, Izdatel’skii dom Vil’yams, 2016, 1104 p.
  6. Fletcher K. Chislennye metody na osnove metoda Galerkina (Numerical methods based on the Galerkin method), Moscow, Mir, 1988, 352 p.
  7. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational methods in fluid dynamics), Moscow, Mir, 1991, vol. 1, 1504 p.
  8. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational methods in fluid dynamics), Moscow, Mir, 1991, vol. 2, 552 p.
  9. Zenkevich O., Morgan K. Konechnye elementy i approksimatsiya (Finite elements and approximation), Moscow, Mir, 1986, 318 p.
  10. Met’yuz D.G., Fink K.D. Chislennye metody. Ispol’zovanie MATLAB (Numerical methods. Using MATLAB), Moscow, Izdatel’skii dom Vil’yams, 2001, 720 p.
  11. Shi D. Chislennye metody v zadachakh teploobmena (Numerical methods in heat transfer problems), Moscow, Mir, 1988, 544 p.
  12. Rouch P. Vychislitel’naya gidrodinamika (Computational fluid dynamics), Moscow, Mir, 1980, 616 p.
  13. Samarskii A.A. Teoriya raznostnykh skhem (Theory of difference schemes), Moscow, Nauka, 1983, 616 p.
  14. Demidovich B.P., Maron I.A., Shuvalova E.Z. Chislennye metody analiza. Priblizhenie funktsii, differentsial’nye i integral’nye uravneniya (Numerical methods of analysis. Approximation of functions, differential and integral equations), Moscow, Nauka, 1967, 368 p.
  15. Kheigeman L., Yang D. Prikladnye iteratsionnye metody (Applied iterative methods), Moscow, Mir, 1986, 448 p.
  16. Marchuk G.I., Shaidurov V.V. Povyshenie tochnosti resheniya raznostnykh skhem (Improving the accuracy of solving difference schemes), Moscow, Nauka, 1979, 320 p.
  17. Fikhtengol’ts G.M. Osnovy matematicheskogo analiza (Fundamentals of mathematical analysis), Moscow, Nauka, 1968, vol. 2, 464 p.
  18. Oden Dzh. Konechnye elementy v nelineinoi mekhanike sploshnykh sred (Finite elements in nonlinear continuum mechanics), Moscow, Mir, 1976, 464 p.
  19. Belov A.A., Igumnov L.A., Karelin I.S., Litvinchuk S.Yu. Trudy MAI, 2010, no. 40. URl: https://trudymai.ru/eng/published.php?ID=22862
  20. Ignatkin Yu.M., Makeev P.V., Shomov A.I. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=65636
  21. Sposobin A.V. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162656. DOI: 10.34759/trd-2021-121-09
  22. Gyagyaeva A.G., Kondratov D.V., Mogilevich L.I. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162650. DOI: 10.34759/trd-2021-121-06
  23. Krylov A.N. Lektsii o priblizhennykh vychisleniyakh (Lectures on approximate calculations), Moscow, GITTL, 1954, 398 p.
  24. Kutysh I.I. Postroenie ravnomerno skhodyashchikhsya ryadov Fur’e dlya setochnykh funktsii: Nekotorye zadachi i metody issledovaniya dinamiki mekhanicheskikh sistem (Construction of uniformly converging Fourier series for grid functions: Some problems and methods of studying the dynamics of mechanical systems, Moscow, Izd-vo MAI, 1985, pp. 68-75.
  25. Kutysh I.I. Osnovy i prilozheniya uluchshennogo spektral’nogo metoda k resheniyu kraevykh zadach (Fundamentals and applications of the improved spectral method to solving boundary value problems), LAP LAMBERT Academic Publishing, 2018, 399 p.
  26. Kutysh I.I. Materialy XII Mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam, VMSPPS’2021, Moscow, Izd-vo MAI, 2021, pp. 53–55.
  27. Khemming R.I. Chislennye metody (Numerical methods), Moscow, Nauka, 1972, 400 p.
  28. Carslaw H.S. Fourier Series and Integrals, Dover Publication, New York, 1930.
    29. Maliev A.S. Izvestiya AN SSSR, 1932, no. 10, pp. 1437–1450.
  29. Kutysh I.I. Materialy XX yubileinoi Mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam, VMSPPS’2017, Moscow, Izd-vo MAI, 2017, pp. 78 — 81.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход