The problem of planning the reconfiguration of the motion control system of a small space vehicle for remote Earth sensing under the conditions of the unknown cyclogram of its functioning


DOI: 10.34759/trd-2022-126-18

Аuthors

Pavlov A. N.1*, Umarov A. B.1*, Kulakov A. Y.2, Gordeev A. V.1*

1. Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
2. Saint Petersburg Federal Research Center of the Russian Academy of Sciences, Saint-Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

Of particular importance at the present time in the development and operation of small spacecraft are the issues of ensuring the required degree of autonomy and survivability, as well as increasing the efficiency of the small spacecraft in various environmental conditions. The relevance of solving these problems for small observation spacecraft is caused, on the one hand, by the peculiarities of the orbit on which this type of spacecraft operates, and on the other hand, by the lack of the possibility of timely control in the event of emergency situations on board the small spacecraft. To ensure the autonomy and survivability of a small spacecraft, it is necessary that it be in working condition for a maximum time or quickly restore its working capacity. That is, it is necessary to be able to change (rebuild) the structure (structures) of the small spacecraft in various environmental conditions in order to maintain the required level of performance. In practice, when solving problems of ensuring reliability, survivability, disaster tolerance and fault tolerance of complex technical systems within the framework of the currently developed theory of structural dynamics control, such a variant of managing the structures of a complex technical object as reconfiguration has become widespread.

This article proposes a method for solving the problem of planning the reconfiguration of a complex technical object based on structural and functional reconfiguration under the conditions of an unknown cyclogram of the activation of the complex technical object operating modes. A computational experiment was carried out on the example of a small spacecraft for remote sensing of the Earth «Aist-2D».

Keywords:

cyclogram of functioning, "blind" and structural-functional reconfiguration, parametric genome, complex multi-mode object

References

  1. Nayak A., Reyes Levalle R., Lee S., Nof S.Y. Resource sharing in cyber-physical systems: modelling framework and case studies, International Journal of Production Research, 2016, vol. 54, no. 23, pp. 6969-6983. DOI:10.1080/00207543.2016.1146419
  2. Theorin A. et al. An event-driven manufacturing information system architecture for Industry 4.0, International Journal of Production Research, 2017, vol. 55, no.5, pp. 1297–1311
  3. Battaïa O., Dolgui A., Guschinsky N. Decision support for design of reconfigurable rotary machining systems for family part production, International Journal of Production Research, 2017, vol. 55, no. 5, pp. 1368–1385
  4. Sevast’yanov N.N., Andreev A.I. Osnovy upravleniya nadezhnost’yu kosmicheskikh apparatov s dlitel’nymi srokami ekspluatatsii (Fundamentals of Reliability Management of Spacecraft with Long Service Life), Tomsk, Tomskii gosudarstvennyi universitet, 2015, 265 p.
  5. Cherkesov G.N., Nedosekin A.O., Vinogradov V.V. Nadezhnost’, 2018, vol. 18, no. 2, pp. 17–24.
  6. Mehdi Jafari. Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system, Aerospace Science and Technology, 2015, vol. 47. pp. 467-472. DOI:10.1016/j.ast.2015.09.017
  7. Raikunova G.G. Ioniziruyushchie izlucheniya kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov (Ionizing radiation from outer space and their impact on the onboard equipment of spacecraft), Moscow, Fizmatlit, 2013, 256 p.
  8. Bukatova I.L. Evolyutsionnoe modelirovanie i ego prilozheniya (Evolutionary modeling and its applications), Moscow, Nauka, 1979, 232 p.
  9. Polenin V.I., Ryabinin I.A., Svirin S.K., Gladkova I.A. Primenenie obshchego logiko—veroyatnostnogo metoda dlya analiza tekhnicheskikh, voennykh organizatsionno—funktsional’nykh sistem i vooruzhennogo protivoborstva (Application of the general logical-probabilistic method for the analysis of technical, military organizational-functional systems and armed confrontation), Saint Petersburg, SPb—regional’noe otdelenie RAEN, 2011, 416 p.
  10. Pavlov A.N., Vorotyagin V.N., Kulakov A.Yu., Umarov A.B. Informatizatsiya i svyaz’, 2020, no. 4, pp. 156-164. DOI: 10.34219/2078-8320-2020-11-5-132-140
  11. Pavlov A.N., Pavlov D.A., Umarov A.B. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161425. DOI: 10.34759/trd-2021-120-11
  12. Pavlov A.N., Pavlov D.A., Vorotyagin V.N., Umarov. A.B. Structural and functional analysis of supply chain reliability in the presence of demand, Proceedings of Models and Methods for Researching Information Systems in Transport 2020, 2021, vol. 2803, pp. 61-66.
  13. Pavlov A.N., Pavlov D.A., Aleshin E.N., Vorotyagin V.N., Umarov A.B. Trudy VKA imeni A.F. Mozhaiskogo, 2021, no. 677, pp. 186-194.
  14. Pavlov A.N., Umarov A.B., Aleshin Ye.N. Study of the structural significance of supply chain elements with variable order rate, Intelligent Transport Systems. Transport Security — 2021. (CEUR-WS 2021), 2021, vol. 2924, pp. 1-8.
  15. Kirilin A.N., Akhmetov R.N., Shakhmatov E.V., Tkachenko S.I. et al. Opytno-tekhnologicheskii malyi kosmicheskii apparat «AIST-2D» (Experimental and technological small spacecraft «AIST-2D»), Samara, Izd-vo SamNTs RAN, 2017, 324 p.
  16. Shipov M.G. Vestnik Camarskogo universiteta. Aerokosmicheskaya tekhnika. Tekhnologii i mashinostroenie, 2019, no. 2, vol. 18, pp. 121-127. DOI: 10.18287/2541-7533-2019-18-2-121-127
  17. Filatov A.V., Tkachenko I.S., Tyugashev E.V., Sopchenko E.V. Materialy Mezhdunarodnoi konferentsii i molodezhnoi shkoly «Informatsionnye tekhnologii i nanotekhnologii»: sbornik trudov. Samara, Samarskii nauchnyi tsentr RAN, 2015, pp. 290-294.
  18. Vasil’kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmel’ A.S. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109557. DOI: 10.34759/trd-2019-108-16
  19. Manuilov Yu.S., Pavlov A.N., Pavlov D.A, Slin’ko A.A. The Technique of Informational Interaction Structural-parametric Optimization of a Earth’s Remote sensing Small Spacecraft Cluster. In book: Cybernetics and Algorithms in Intelligent Systems, Springer International Publishing Switzerland, 2018, vol. 3, pp. 155-166. DOI:10.1007/978-3-319-91192-2_17
  20. Borodin V.V. Trudy MAI, 2012, no. 58. URL: https://trudymai.ru/eng/published.php?ID=33036
  21. GOST 27.003-90. Nadezhnost’ v tekhnike. Sostav i obshchie pravila zadaniya trebovanii po nadezhnosti (Reliability in technology. Composition and general rules for setting reliability requirements), 1990.
  22. Kolodezhnyi L.P., Chernodarov A.V. Nadezhnost’ i tekhnicheskaya diagnostika (Reliability and technical diagnostics), Moscow, VVA im. prof. N.E. Zhukovskogo i Yu.A. Gagarina, 2010, 452 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход