Numerical calculation of the flap T-gearbox kinematic error


DOI: 10.34759/trd-2022-126-22

Аuthors

Budaev G. A.*, Danilov D. A., Konotop O. I.

PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia

*e-mail: Gleb.Budaev@irkut.com

Abstract

This article is devoted to research of the kinematic error in the units of servo systems with mechanical transmissions. The flap Т-gearbox of the high lift transmission was considered as the object of the study. Numerical simulation methods were used to determine the kinematic accuracy of the research object. Geometric dimensioning and tolerances of gearbox components were assigned, a 3D CAD model was built with the worst-case combination of tolerance fields, material characteristics were assigned, forces, constraints and boundary conditions were specified, and the results were evaluated. There are many methods of solving this issue. Analytical methods and methods using 3D modeling allow to determine the kinematic error in the early stages of the design, but they are not automatized. Experimental methods of calculation have the greatest accuracy, but are not possible in the early stages of project development. The numerical simulation method is devoid of the disadvantages of analytical methods. The basic equation of dynamics for the investigated system was formulated and solved using the HHT integrator based on the α-method. The interface between the surfaces of the rigid bodies was defined by contact force. In the first case of the calculation, the gearbox housing was fixed in space, the other bodies were constrained to move in a plane perpendicular to the plane of rotation of the shafts. In the second case, only the outer rings of the bearings and their sleeves were constrained to move in the plane, because they were fixed in the axial direction in the real construction. Because of the shaft axis displacement possibility in angular directions and the possibility of axial displacement, the kinematic error increased significantly. At the early stage of development, the value of gearbox kinematic accuracy was determined. The obtained value complies with the requirements for the accuracy of the high lift transmission. The specified geometric dimensioning and tolerances are not very precise or too rough and can be applied to other single stage bevel gearboxes used in high lift transmissions.

Keywords:

kinematic error, gearbox, gear set, tolerances, numerical simulation

References

  1. Egorov I.M., Aleksanin S.A., Fedosovskii M.E., Kryazheva N.P. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2014, no. 6 (94), pp. 171-176.
  2. Timofeev B.P., Abramchuk M.V., Bzhikhatlov I.A. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2019, vol. 62, no. 12, pp. 1092-1097. DOI: 10.17586/0021-3454-2019-62-12-1092-1097
  3. Timofeev, B.P., Abramchuk M.V. Ispolzovanie standartov pri proektirovochnykh otsenkakh kinematicheskoi pogreshnosti zubchatykh peredach // Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2020, vol. 63, no. 6, pp. 555-561. DOI: 10.17586/0021-3454-2020-63-6-555-561
  4. Kokina T.M. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2017, no. 3, pp. 50-53. DOI: 10.24153/2079-5920-2017-7-3-50-53
  5. Zabelin D.A. Vestnik Mogilevskogo tekhnicheskogo universiteta, 2006, no. 1 (10), pp. 73-77.
  6. Vasil’ev M.A., Stepanov V.S. Aerospace MAI Journal, 2016, vol. 23, no. 1, pp. 163 — 169.
  7. Vasiliev M., Stepanov V. Research of the Kinematic Error of a Wave Gear with Rolling Bodies, Advances in Intelligent Systems and Computing, 2020, vol. 1115, pp. 550-558. DOI: 10.1007/978-3-030-37916-2_53
  8. Vasil’ev M.A. 17 Mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika-2018»: tezisy dokladov, Moscow, Lyuksor, 2018, pp. 376-377.
  9. Kapitonov A.V., Nepsha D.V., Goncharov M.V., Lysov V.P., Chernyakov S.G. Vestnik Belorussko-Rossiiskogo universiteta, 2014, no. 3 (44), pp. 14-24. DOI: 10.53078/20778481_2014_3_14
  10. Kostikov Yu.V., Timofeev G.A., Fursyak F.I. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2013, no. 8, pp. 30-34.
  11. Lyuminarskii I.E., Lyuminarskii S.E., Ivanov Yu.S. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2019, no. 11 (716), pp. 3-8. DOI: 10.18698/0536-1044-2019-11-3-8
  12. Lyuminarskii I.E., Lyuminarskii S.E., Balasanyan V.V. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2021, no. 4 (733), pp. 48-54. DOI: 10.18698/0536-1044-2021-4-48-54
  13. Goldovskii A.A., Firsanov V.V. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115122. DOI: 10.34759/trd-2020-111-6
  14. Goldovskii A.A. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107919
  15. Yudin D.A. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107913
  16. Novoselov B.V., Bushenin D.V. Proektirovanie mekhanicheskikh peredach sledyashchego privoda (Design of mechanical transmissions for servo drives), Vladimir, Oblastnoi sovet NTO, 1981, 172 p.
  17. Chestnat G., Maier R. Proektirovanie i raschet sledyashchikh sistem i sistem regulirovaniya (Design and calculation of servo systems and regulation systems), Moscow-Leningrad, Gosenergoizdat, 1959, vol. I. — 340 p.; vol. II. — 391 p.
  18. Novoselov B.V. Mekhanicheskie peredachi v sledyashchem privode (Mechanical transmissions in a servo drive), Moscow, NTTs Infrotekhnika, 1993, 112 p.
  19. Balakshin B.S. et al. Vzaimozamenyaemost’ i tekhnicheskie izmereniya v mashinostroenii (Interchangeability and technical measurements in mechanical engineering), Moscow, Mashinostroenie, 1972, 616 p.
  20. Adam Ya.I., Ovumyan G.G. Spravochnik zuboreza (Tooth Cutter’s Guide), Moscow, Mashinostroenie, 1971, 232 p.
  21. Hilber H.M., Hughes T.J.R., Taylor R.L. Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, 1977, vol. 5 (3), pp. 283-292. DOI: 10.1002/eqe.4290050306
  22. Newmark N.M. A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, 1959. DOI: 10.1061/TACEAT.0008448
  23. Hussein B., Shabana A.A., Negrut D. Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations, Nonlinear Dynamics, 2008, vol. 54, no. 4, pp. 283-296. DOI 1007/s11071-007-9328-9
  24. Lustenkova E.S., Metelitsa Ya.N., Moiseenko A.N. Vestnik Belorussko-Rossiiskogo universiteta, 2020, no. 2 (67), pp. 68-77. DOI: 10.53078/20778481_2020_2_68
  25. Gerasimchuk V.V. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107904
  26. Lankarani H.M., Nikravesh P.E. A contact force model with hysteresis damping for impact analysis of multibody systems, Journal of mechanical design, 1990, vol. 112 (3), pp. 369-376. DOI: 10.1115/1.2912617
  27. Marchenko D.M., Shimanovskii A.O. Mekhanika. Issledovaniya i innovatsii, 2018, no. 11, pp. 185-194.
  28. Anur’ev V.I. Spravochnik konstruktora-mashinostroitelya (Handbook for the mechanical engineer), Moscow, Mashinostroenie, 2001, vol. 2, 683 p.
  29. GOST 1758-56. Peredachi zubchatye (Gears. GOST 1758-56.), Moscow, Izd-vo standartov, 1973, 219 p.
  30. Nakhatakyan F.G. Trudy MAI, 2020, no. 115. URL: https://trudymai.ru/eng/published.php?ID=119901. DOI: 10.34759/trd-2020-115-04
  31. Sorokin F.D., Chzhan Kh., Popov V.V., Ivannikov V.V. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100582
  32. Terskov V.G., Romantsov V.A. Dinamicheskie svoistva i kinematicheskie pogreshnosti ispolnitel’nykh mekhanizmov pri raschete i proektirovanii sledyashchikh system (Dynamic properties and kinematic errors of actuators in the calculation and design of servo systems), Moscow, Izd-vo MAI, 1976, 130 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход