About the method of confirming the operability of the phase separator of an in-tank capillary device


DOI: 10.34759/trd-2022-127-07

Аuthors

Alexandrov L. G.*, Konstantinov S. B.**, Markov A. V., Platov I. V.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: aia@laspace.ru
**e-mail: konstantinov@laspace.ru

Abstract

For propulsion systems of space craft multiple burns engine, the condition for normal operation is the supply of liquid propellant components to the consumable lines without disturbing the continuity of the flow. The article discusses the method of conducting control tests of the phase separator of the capillary-type in-tank device at the stage of full readiness of the fuel tank. One of the most important stages in the creation of fuel tanks is their ground experimental testing, carried out under conditions close to operating conditions.

The main purpose of such tests is to confirm the compliance of the technical characteristics of the tank with the required values specified in the technical specification for its development. As a criterion for assessing the quality of the phase separator, the efficiency coefficient was chosen, which is the ratio of the capillary holding capacity of the mesh field of the phase separator material to the hydraulic resistance of the phase separator to the flow of liquid passing through it and containing gas inclusions.

The methodology given in the article for determining the operability of a capillary phase separation device at the stage of control tests of a finished fuel tank makes it possible to guarantee the required performance indicators of an in-tank capillary device at the stage of factory ground tests, which improves the quality of finished products. The result of this work is a decision on the compliance of the tested prototype tank with the specified requirements and the possibility of its full-scale operation as part of the propulsion system of the spacecraft.

Keywords:

capillary holding capacity, metal mesh, combined porous mesh material, hydraulic resistance, efficiency coefficient

References

  1. Aleksandrov A.A., Khartov V.V., Novikov Yu.M., Krylov V.I., Yagodnikov D.A. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya: Mashinostroenie, 2015, no. 6(105), pp. 130-142.
  2. Sapozhnikov V.B., Men’shikov V.A., Partola I.S., Korol’kov A.V. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta imeni N.E. Baumana. Seriya: Mashinostroenie, 2006, no. 2(63), pp. 78-88.
  3. Sapozhnikov V.B., Korol’kov A.V. Matematicheskoe modelirovanie protsessa oporozhneniya toplivnogo baka letatel’nogo apparata v usloviyakh orbital’nogo poleta, Physical and Mathematical Problems of Advanced Technology Development. Abstracts of International Scientific Conference, Moscow, BMSTU, 2014, pp. 80-81.
  4. Korol’kov A.V., Sapozhnikov V.B., Efremov N.V. Obozrenie prikladnoi i promyshlennoi matematiki, 2018, vol. 25, no. 3, pp. 255-258.
  5. Korol’kov A.V., Men’shikov V.A., Partola I.S., Sapozhnikov V.B. Vestnik Moskovskogo gosudarstvennogo universiteta lesa. Lesnoi vestnik, 2007, no. 2, pp. 35–39.
  6. Partola I.S. Pervaya mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Aerokosmicheskie tekhnologii», posvyashchennaya 90-letiyu so dnya rozhdeniya akademika V.N. Chelomeya: sbornik dokladov. Moscow, MGTU im. N.E. Baumana, 2004, pp. 19–22.
  7. Korol’kov A.A., Partola I.S., Sapozhnikov V.B. Teoreticheskie osnovy razrabotki i eksperimental’noi otrabotki kapillyarnykh zabornykh ustroistv s minimal’nymi ostatkami topliva: Nauchno-tekhnicheskie razrabotki OKB-23—KB «Salyut» (Principal Theory of Development and Experimental Testing Capillary Intake Devices with Minimal Fuel Residues), Moscow, Vozdushnyi transport, 2006, pp. 313–320.
  8. Avduevskii V.S., Korol’kov A.V., Kuptsova V.S., Savichev V.V. Prikladnaya mekhanika i tekhnicheskaya fizika, 1987, vol. 1, pp 54-59.
  9. Bagrov V.V., Kurpatenkov A.V., Polyaev V.M. et al. Kapillyarnye sistemy otbora zhidkosti iz bakov kosmicheskikh letatel’nykh apparatov (The Capillary System for Fluid Intake from the Spacecraft Tanks), Moscow, UNPTs «Energomash», 1997, 328 p.
  10. Sapozhnikov V.B. Krylov V.I., Novikov Yu.M., Yagodnikov D.A. Inzhenernyi zhurnal: nauka i innovatsii, 2013, no. 4, pp. 41.
  11. Novikov Yu.M., Bol’shakov V.A., Aleksandrov L.G. et al. Vestnik NPO im. S.A. Lavochkina, 2021, no. 1, pp. 44-51. DOI: 10.26162/LS.2021.51.1.006
  12. Platov I.V., Simonov A.V. Sibirskii zhurnal nauki i tekhnologii, 2018, vol. 19, no. 3, pp. 517-525. DOI: 10.31772/2587-6066-2018-19-3-517-525
  13. Aleksandrov L.G., Bogdanov A.A., Bol’shakov V.A., Konstantinov S.B. et al. Patent RU 2 657 137 S2, 08.06.2019.
  14. Tret’yakov A.F. Zagotovitel’nye proizvodstva v mashinostroenii, 2019, vol. 17, no. 9, pp. 423-430.
  15. Belov S.V. Poristye pronitsaemye materialy: spravochnik (Porous permeable materials. Handbook), Moscow, Metallurgiya, 1987, 335 p.
  16. Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniyam (Handbook of hydraulic resistances), Moscow, Mashinostroenie, 1992, 672 p.
  17. Yui Chzhaokai, Temnov A.N. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168991&eng=N. DOI: 10.34759/trd-2022-126-05
  18. Bernikov A.S., Petrov Yu.A., Sergeev D.V., Shtokal A.O. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162657. DOI: 10.34759/trd-2021-121-10
  19. Sanchugov V.I., Rekadze P.D. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167005. DOI: 10.34759/trd-2022-124-10
  20. Aleksandrov L.G., Konstantinov S.B., Korol’kov A.V. et al. Vestnik NPO im. S.A. Lavochkina, 2021, no. 4, pp. 15-21. DOI: 10.26162/LS.2021.54.4.003

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход