Improving and processing of weak digital pulse signals using a narrow-band noise structure


DOI: 10.34759/trd-2022-127-09

Аuthors

Khafaga A. S.*, Ilyin A. G.**

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

*e-mail: alisalahelect1985@gmail.com
**e-mail: iag29@yandex.ru

Abstract

The article considers the result of the modernization of strain gauges installed in the working part of the supersonic wind tunnel (AT) ST-3, which allows to increase the range of experimental studies on the angle of attack of the model under study from 0 to 20 degrees. Numerical studies of the flow of the model in the working part of the pipe have been carried out in order to verify that the model is located inside the rhombus of an undisturbed flow.

The supersonic AT ST-3 is widely used to create gas flows of specified parameters for the experimental study of the flow around models of aircraft elements in the range of Mach numbers from 1.5 to 4.2. To increase the range of experimental possibilities, the authors proposed to increase the range of angles of attack of the model under study, taking into account its finding inside the rhombus of a uniform part of the flow.

The supersonic AT ST-3 makes it possible to determine the aerodynamic forces acting on the model under study at angles of attack in the range from — 10° to +10°, which limits the field of study. The range of angles of attack is determined by the boundary of the rhombus of the uniform part of the flow in the working part of the pipe.

To ensure the adequacy of the simulation, the conditions of adhesion and isothermicity were used on the surface of the body and the walls of the working part of the pipe. According to the values of pressure (p0=14 kgf /cm2) and temperature (T0=283K) of the gas in the receiver, the flow parameters in the working part of the pipe were calculated (M=4.2; p=6467 Pa; T=61.8 K; a=8 m/s), and also determined the arrangement of the rhombus of the uniform part of the flow.

For the calculations, the Navier-Stokes equations were used, which are closed by the turbulence equations k-ω SST. The calculation scheme is shown in Figure 5. A sphere with a radius of R = 20 mm was chosen as the model.

Modeling was carried out using a structured prismatic finite element grid of 1032 thousand elements (26 elements accounted for the thickness of the boundary layer (parameter y+=0.3)).

Modernization of the fastening system of strain gauges located in the path of the supersonic AT ST-3, taking into account the requirements of permissible «cluttering» of the working part of the pipe, will allow experimental studies to determine the aerodynamic forces acting on the model at angles of attack up to 20°, which is of interest when conducting studies of the aerodynamic spectrum.


Keywords:

phase jumps, phase detector, pulse signals, narrow-band noise, signal-to-noise ratios, noise immunity, narrow band signal (NB), On – Off-Keying Modulation (OOK)

References

  1. Il’in A.G. Povyshenie pomekhoustoichivosti i propusknoi sposobnosti radiotekhnicheskikh i optoelektronnykh sistem na baze amplitudno-fazovogo preobrazovaniya signala i shumov (Increase of noise immunity and transmission capacity of radio engineering and optoelectronic systems based on amplitude-phase transformation of signal and noise), Kazan’, Izd-vo KGTU im. A.N.Tupoleva, 2005, 192 p.
  2. Il’in A.G., Khafadzha A.S. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162663. DOI: 10.34759/trd-2021-121-16
  3. Ageev F.I., Voznyuk V.V., Khudik M.Yu. Trudy MAI, 2021, no. 118. URL: http://trudymai.ru/eng/published.php?ID=158242. DOI: 10.34759/trd-2021-118-08
  4. Ilyin A.G., Khafaga A.S.M., Yunusova V. Modeling the Narrowband and Wideband Noise at the Output of Nonlinear Converters, Systems of Signals Generating and Processing in the Field of on Board Communications, 2021. DOI:10.1109/IEEECONF51389.2021.9416064
  5. Kuznetsov V.S., Volkov A.S., Solodkov A.V., Soroka V.G. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115131. DOI: 10.34759/trd-2020-111-9
  6. Popov A.A. Vіsnik Derzhavnogo unіversitetu іnformatsіino-komunіkatsіinikh tekhnologіi, 2012, vol. 10, no. 2, pp. 65-71.\
  7. Middlton D. Ob obnaruzhenii stokhasticheskikh signalov v additivnom normal’nom shume, IRE Transactions on Information Theory, 1957, vol. 3 (2), pp. 86-121.‏
  8. Varakin L.E. Sistemy svyazi s shumopodobnymi signalami (Communication systems with noise-like signals), Moscow, Radio i svyaz’, 1985, 384 p.
  9. Volkov A.S., Solodkov A.V., Suslova K.O., Strel’nikov A.P. Trudy MAI, 2021, no. 119.‏ URL: http://trudymai.ru/eng/published.php?ID=159789. DOI: 10.34759/trd-2021-119-11
  10. Kazak P.G., Shevtsov V.A. Trudy MAI, 2021, no. 118.‏ URL: http://trudymai.ru/eng/published.php?ID=158239. DOI: 10.34759/trd-2021-118-06
  11. Borisov V.I. Zinchuk V.M. Pomekhozashchishchennost’ sistem radiosvyazi. Veroyatnostno-vremennoi podkhod (Interference immunity of radio communication systems. Probability-time approach), Moscow, RadioSoft, 2008, 260 p.
  12. Zvonarev V.V., Popov A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104213
  13. Golubev V.N., Zimoglyad V.G. Radiotekhnika, 1986, no. 10, pp. 2205-2208.
  14. Zakharov S.I., Korado V.A. Radiotekhnika i elektronika, 1985, no. 3, pp. 504-512.
  15. Erkin F.B., Vazhenin N.A., Veitsel’ V.V. Trudy MAI, 2015, no. 83. URL:‏ http://trudymai.ru/eng/published.php?ID=62221
  16. Dobrushin R.L. Teoriya veroyatnostei i ee primeneniya, 1958, vol. 3, no. 2, pp. 173-185.‏
  17. Krutov A. Besprovodnye tekhnologii, 2007, no. 1 (6), pp. 6-9.
  18. Slepian D. Some comments on the detection of Gaussian signals in Gaussian noise, IRE Transactions on Information Theory, 1958, vol. 4 (2), pp. 65-68. DOI:10.1109/TIT.1958.1057443
  19. Il’in A.G., Khafadzha A.S. XXV Tupolevskie chteniya: materialy konferentsii, Kazan’, Izd-vo «Sagiev», 2021.
  20. Kamenskiy A.V. High-speed recursive-separable image processing filters, Computer Optics, 2022, no. 46 (4), pp. 659-665. DOI: 10.18287/2412-6179-CO-1063

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход