Proposal to provide power supply to a network of clusters of small spacecraft with a tandem spacecraft


DOI: 10.34759/trd-2022-127-11

Аuthors

Dmitriev A. O.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

e-mail: dao@laspace.ru

Abstract

This article proposes the construction of a tandem of spacecraft consisting of an autonomous satellite with a large area of solar phototransformers and an autonomous satellite for transmitting the received energy to small spacecraft using laser radiation. This tandem is connected by a contactless magnetic resonance method of energy transfer.

To provide the cluster with energy, it is planned to develop a modular, i.e. not mechanically integrated into a single whole, satellite complex — a tandem with a contactless power transmission line. The tandem should consist of spacecraft moving in close orbits interacting with each other via wireless communication and energy transmission lines. The main task of this tandem is to supply energy to a cluster of small spacecraft performing target tasks.

Then conceptually such a complex will have the following structure:

  1. A photodetector satellite with a large transformable design of phototransformers deployed in space, including an energy storage system and a magnetoresonance contactless energy transmission system to a satellite emitter.
  2. One or more satellite emitters including fiber lasers for transmitting energy to a cluster of small spacecraft in the region of up to 2 microns, as well as several ports of a magnetic resonance energy reception system.

Although at first glance the integral execution of the photodetector-emitter system suggests itself, in practice this is a non-trivial task. Such a large-sized design, which will experience serious temperature changes and at the same time have high requirements for targeting the receivers of the cluster spacecraft, will require a complex stabilization and guidance system. The advantage of fragmentary tandem construction is the absence of such serious requirements and the ability to increase the coverage angle with laser or microwave radiation for cluster satellites. It is also possible to use several satellite emitters for greater coverage of consumers from a cluster of small spacecraft.

Keywords:

magnetic resonance, phototransforming structures, laser energy transmission channel

References

  1. Glaser P.E. Power from the Sun: its Future, Science, 1968, vol. 162, pp.856-861. DOI: 10.1126/science.162.3856.857
  2. Vyatlev P.A., Dmitriev A.O., Karchaev Kh.Zh., Sysoev V.K. Trudy MAI, 2016, no. 87 URL: https://trudymai.ru/eng/published.php?ID=69658
  3. Sysoev V.K., Barabanov A.A., Dmitriev A.O., Nesterin I.M., Pichkhadze K.M., Suimenbaev B.T Trudy MAI, 2014, no. 77. URL: https://trudymai.ru/eng/published.php?ID=52959
  4. Sysoev V.K., Ponamarenko A.D., Verlan A.A. Al’ternativnyi kilovatt, 2011, no. 5 (11), pp. 14-18.
  5. Barkova M.E. Geologiya, geografiya i global’naya energiya, 2016, no 4 (63), pp. 36–43.
  6. Jaejoo Lim, Richard Klein, Jason Thatcher. Good technology, bad management: A case study of the satellite phone industry, Journal of Information Technology Management. Association of Management, 2005, 16 (2), pp. 48–55.
  7. SpaceX non-geostationary satellite system. Attachment a technical information to supplement schedule. URL: https://fcc.report/IBFS/SAT-LOA-20161115-00118/1158350.pdf
  8. Jiang J., Chen Q., Yao B., Guo J. Desired Compensation Adaptive Robust Control of Mobile Satellite Communication System with Disturbance and Model Uncertainties, International Journal of Innovative Computing, Information and Control, 2013, vol. 9, no. 1, pp. 153 — 164.
  9. Shah N., Brown O.C. Fractionated Satellites: Changing the Future of Risk and Opportunity for Space Systems, High Frontier, 2008, vol. 5, no. 1, pp. 29-36.
  10. Sysoev V.K., Pichkhadze K.M., Verlan A.A., Papchenko B.P. Opticheskii zhurnal, 2012, vol. 79, no. 8, pp. 116-119.
  11. Barkova M.E. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121078. DOI: 10.34759/trd-2021-116-09
  12. Barkova M.E. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=72899
  13. Komkov V.A., Mel’nikov V.M., Kharlov B.N. Formiruemye tsentrobezhnymi silami kosmicheskie solnechnye batarei (Space solar panels formed by centrifugal forces), Moscow, Cheros, 2007, 188 p.
  14. Dyukov V.A. Trudy MAI, 2021, no. 116. URL:http://trudymai.ru/eng/published.php?ID=121089. DOI: 10.34759/trd-2021-116-12
  15. Finchenko V.S., Pichkhadze K.M., Efanov V.V. Naduvnye elementy v konstruktsiyakh kosmicheskikh apparatov — proryvnaya tekhnologiya v raketno-kosmicheskoi tekhnike (Inflatable elements in spacecraft structures — breakthrough technology in rocket and space technology), Khimki, NPO Lavochkina, 2019, pp. 416-450.
  16. Ramanathan K., Contreras M.A., Perkins C.L., Asher S. et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Progress in Photovoltaics Research and Applications, 2003, no. 11 (4), pp. 225-230. DOI:10.1002/pip.494
  17. IPG Photonics Corporation. The Fiber Laser CompanyTM. Needham’s 14th Annual Growth Conference, January 2012. URL: https://seekingalpha.com/article/318740-ipg-photonics-cfo-presents-at-14th-annual-needham-growth-conference-transcript
  18. Kurkov A.S., Sholokhov E.M., Tsvetkov V.B. et al. Kvant. Elektronika, 2001, no. 41 (6), pp. 492-494.
  19. Barker D., Summerer L. Assessment of field wireless power transmission for fractionated spacecraft applications, 62 International Astronautical Congress, 2011, Cape Town, South Africa.
  20. Kurs A., Moftatt R., Soljacic M. Simultance mid-range power transfer to multiple devices, Appllied Physics Letters, 2010, vol. 96, no. 4, pp. 44-109. DOI:10.1063/1.3284651

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход