Substantiation of the effectiveness of the use of signals with orthogonal frequency division multiplexing in aviation radio systems of information transmission


DOI: 10.34759/trd-2022-127-14

Аuthors

Burenko E. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: super.evgeny-burenko2012@yandex.ru

Abstract

Aviation complexes of communication facilities are subject to stringent requirements in terms of weight and size indicators and energy consumption. Along with this, to ensure high-speed data transmission between a ground control station (GCS) and an unmanned aerial vehicle (UAV) over long distances (up to 300 km), it is required to provide high energy in the radio channel. This paper discusses the main negative factors of aviation radio channels that reduce the efficiency of the radio system of information transmission, which can be eliminated as a result of the use of signal-code structures based on the use of signals with orthogonal frequency division multiplexing (OFDM). Such negative factors include the presence of fading of the radio signal at the input of the receiver of the radio system and the possible impact on the operation of the radio system of interference. Discusses the main characteristics and advantages of signals with OFDM over classical single-frequency signals (for example, with binary phase shift keying — BPSK) are considered, as well as basic engineering and technical calculations are presented confirming the validity of the use of these signal-code structures in aviation radio systems for information transmission, as one of solutions for combating fading caused by multipath signal propagation, and as a result, with inter-symbol interference (ISI), which manifests itself in the superposition of re-reflected signals on the direct (main) signal. Discusses the methods for ensuring the noise immunity and secrecy of a radio system with OFDM based on the use of broadband pseudo-noise signals (PNS) together with OFDM signals are considered. For example, M-sequences or Gold’s sequences, which are widely used in radio systems for various purposes, can be used as PNS. To combat narrow-band interference, signal jamming protection can be used, which is reduced to a significant increase in the band occupied by the OFDM signal. Band increases as a result of superposition of the PNS signal with base B ≫ 1 on each subcarrier of the OFDM. The simplest method for reducing the interference power in the receiving part is the narrowband interference decorrelation method, which reduces the interference power to the base B times as a result of multiplying the interference signal with the reference PNS in the demodulator PNS. As a result of multiplication, the interference is converted into a signal with a uniform power spectral density in the interference band, similar to the effect of white noise.

Keywords:

aviation radio communication, signal fading, multipath propagation, information transfer rate, information transmission radio systems, orthogonal frequency division multiplexing, OFDM, noise immunity, stealth, pseudo-noise signals, PNS

References

  1. Teplyakov I.M. Osnovy postroeniya telekommunikatsionnykh sistem i setei (Fundamentals of construction of telecommunication systems and networks), Moscow, Radio i svyaz’, 2004, 328 p.
  2. Bakulin M.G., Kreindelin V.B., Shloma A.M., Shumov A.P. Tekhnologiya OFDM (OFDM technology), Moscow, Goryachaya liniya-Telekom, 2017, 352 p.
  3. Fomin A.I., Yalin A.K. Elektrosvyaz’, 2017, no. 12, pp. 34-41.
  4. Dolukhanov M.P. Rasprostranenie radiovoln (Propagation of radio waves), Moscow, Izd-vo Svyaz’, 1972, 336 p.
  5. Teplyakov I.M., Roshchin B.V., Fomin A.I., Veitsel’ V.A. Radiosistemy peredachi informatsii (Radio systems for information transmission), Moscow, Radio i svyaz’, 1982, 264 p.
  6. Mazepa R.B. Radiosistemy i seti peredachi informatsii (Radio systems and information transmission networks), Moscow, Izd-vo MAI, 2002, 568 p.
  7. Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie (Digital communication. Theoretical foundations and practical application), Moscow, Izdatel’skii dom Vil’yams, 2007, 1104 p.
  8. Veitsel’ V.A. Teoriya i proektirovanie radiosistem radioupravleniya i peredachi informatsii (Theory and design of radio systems of radio control and transmission of information), Moscow, Goryachaya liniya-Telekom, 2018, 182 p.
  9. Reports of the CCIR. Annex to volume V. Propagations in non-ionized media. 1990. URL: https://search.itu.int/history/HistoryDigitalCollectionDocLibrary/4.283.43.en.1012.pdf
  10. Reports of the CCIR. Annex to volume IX — Part 1. Fixed service using radio relay systems. 1990. URL: https://search.itu.int/history/HistoryDigitalCollectionDocLibrary/4.283.43.en.1022.pdf
  11. Hanzo L., Munster M., Choi B.J., Keller T. OFDM and MC-CDMA for Broadband Multi-User Communications, WLANS and Broadcasting, New York, John Wiley, Apr. 2004, 980 p.
  12. Kuznetsov V., Solodkov A., Malyshev A. A Method Of Quadrature Digital
    Modulation APSK — PAM, 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies, ICCICCT-2016, 16-17 December 2016, Kumaracoil, India, pp. 172–175. DOI: 10.1109/ICCICCT.2016.7987933
  13. Climini L.J. Analysis and simulation of digital Mobile channel using Orthogonal
    Frequency division Multiplexing, IEEE Transactions Communications, 1985, vol. 33, no. 7, pp. 665–675. DOI: 10.1109/TCOM.1985.1096357
  14. Fomin A.I., Khamad A. Trudy MAI, 2008, no. 30. URL: https://trudymai.ru/eng/published.php?ID=7525
  15. Titov K.D. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164250. DOI: 10.34759/trd-2022-122-12
  16. Fomin A.I., Malyutina O.A. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109437. DOI: 10.34759/trd-2019-108-7
  17. Ageev F.I., Voznyuk V.V. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167070. DOI: 10.34759/trd-2022-124-15
  18. Agaev F.G., Asadov Kh.G., Zul’fugarly P.R. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159793. DOI: 10.34759/trd-2021-119-15
  19. Ageev F.I., Voznyuk V.V., Khudik M.Yu. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158242. DOI: 10.34759/trd-2021-118-08
  20. Kuznetsov V.S., Shevchenko I.V., Volkov A.S., Solodkov A.V. Trudy MAI, 2017, no. 96. URL: https://trudymai.ru/eng/published.php?ID=85813

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход