Frequency estimate for symmetric and asymmetric structure of spectral components of sampled harmonic signal


DOI: 10.34759/trd-2023-129-15

Аuthors

Alrubei M. A.*, Pozdnyakov A. D.**

State University named after Alexander and Nikolay Stoletovs, 87, Gorky str. Vladimir, 600000, Russia

*e-mail: inj.moh3@atu.edu.iq
**e-mail: 11alexpozd@mail.ru

Abstract

A sampled harmonic signal frequency estimating is an important task while signal processing in many applications such as radio communications, monitoring and control systems and others. Discrete spectra may be employed to measure frequencies of the sine signal components. The said measurement consists in digitizing the composite signal, performing window processing of the signal samples and cpmputing their discrete amplitude spectrum, usually using a fast Fourier transform algorithm. However, the frequency of a sine component can be determined with improved resolution using the moment method of the largest consecutive element of the spectrum corresponding to this component. The abscissa of its maximum represents the best frequency approximation.

An algorithm for the frequency estimating of a sampled harmonic signal of limited duration by the method of moments is proposed, which allows obtaining a weighted average estimate of the energy spectrum peak position. The methodological component of the error depends on the degree of closeness of the frequency true value and the energy center position, due to the type of window function. The error is being determined by the step of the fast Fourier transform (FFT) frequency grid, the type of the window function used, and duration of the signal sampling interval. The article shows a noticeable effect of the even and odd structure of the spectral lines being accounted for. In the symmetry region of the even spectrum structure, when the levels of the principal components change, a jump in the methodological error is formed, which can be eliminated by introducing correction or limiting the operating frequency range to the region of odd symmetry. The authors propose introducing an estimate of the spectrum structure into the algorithm and automatically select an even number of spectral lines for the spectrum close to even symmetry and an odd number for odd symmetry to compute frequency. The maximum methodological error can be reduced herewith by an order of magnitude or more. Some windows allow increasing the frequency measurement resolution by more than an order of magnitude. The purpose of this article is to show as well that even better results are achieved using the Chebyshev window. This method has been employed to set up measurement systems in control and management systems.

Keywords:

frequency, harmonic signal, frequency estimation methods, reading, error, spectrum, asymmetric structure, fast Fourier transform, moment method

References

  1. Tereshkin D.O., Semibalamut V.M. Avtomatika i programmnaya inzheneriya, 2018, no. 2 (24), pp. 117-130.
  2. Vais S.N., Repina M.V. Trudy MAI, 2014, no. 74. URL: https://trudymai.ru/eng/published.php?ID=49333
  3. Baidarov S.Yu. et al. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Tekhnicheskie nauki, 2012, no. 1, pp. 105-115.
  4. Rozenberg V.Ya. Vvedenie v teoriyu tochnosti izmeritel’nykh system (Introduction to the theory of accuracy of measuring systems), Moscow, Sovetskoe radio, 1975, 304 p.
  5. Harris Fredrick J. Using Windows for Discrete Fourier Transform Harmonic Analysis, IEEE, 1978, vol. 66, no. 1. DOI: 10.1109/PROC.1978.10837
  6. Serov A.N., Shatokhin A.A. Voprosy primeneniya tsifrovoi obrabotki signalov, 2018, vol. 8, no. 4, pp 79-84.
  7. Eric Jacobsen, Peter Kootsookos. Fast, Accurate Frequency Estimators, IEEE Signal Processing Magazine, 2007, vol. 24, issue 3, pp. 123-125. DOI: 10.1109/MSP.2007.361611
  8. Gnezdilov D.S., Matveev B.V. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 9, no 2, pp. 37-39.
  9. Kayukov I.V., Manelis V.B. Izvestiya vuzov. Radioelektronika, 2006, no. 7, pp. 42-55.
  10. Bernard Bischl, Uwe Ligges, Klaus Weichs. Frequency Estimation by DFT Interpolation: A Comparison of Methods, Journal of Signal Processing, May 2009. DOI:10.17877/DE290R-588
  11. Gasior M., Gonzalez J. L. Improving the resolution of FFT frequency measurements with parabolic and Gaussian interpolation, November 2004. DOI: 10.1063/1.1831158
  12. Gnezdilov D.S. et al. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 9, no. 3-1, pp. 124-126.
  13. Chang-Gui Xie. Frequency Estimation of Weighted Signals Based On DFT Interpolation Algorithm, 3rd International Conference on Wireless Communication and Sensor Networks (WCSN 2016). DOI: 10.2991/icwcsn-16.2017.99
  14. Xiao Yangcan, Ping Wei. Novel frequency estimation by interpolation using Fourier coefficients, 8th international Conference on Signal Processing, 2006, vol. 1. DOI: 10.1109/ICOSP.2006.344453
  15. Antipov S.A., Gnezdilov D.S., Koz’min V.A., Stopkin V.M. Radiotekhnika, 2014, no. 3, pp. 42-46.
  16. Peter R. Effective measurements using digital signal analysis, IEEE Spectrum, 1971, vol. 8, issue 4, pp. 62-70.‏ DOI: 10.1109/MSPEC.1971.5218046
  17. Minda Andrea Amalia, Constantin-Ioan Barbinita, Gilbert Rainer Gillich. A Review of Interpolation Methods Used for Frequency Estimation, Romanian Journal of Acoustics and Vibration, 2020, vol. 17 (1), pp. 21-26.‏
  18. Pozdnyakov A.D., Pozdnyakov V.A. Biomeditsinskie tekhnologii i radioelektronika, 2004, no. 3, pp. 41-45.
  19. Al’rubei M.A., Pozdnyakov A.D. X Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Fundamental and applied approaches to solving scientific problems»: sbornik statei. Ufa, NITs Vestnik nauki, 2023, рр. 47
  20. Pozdnyakov A.D., Pozdnyakov V.A. Avtomatizatsiya eksperimental’nykh issledovanii, ispytanii i monitoringa radiosistem (Automation of experimental research, testing and control of radio systems), Moscow, Radiotekhnika, 2004, 207 p.
  21. Pozdnyakov A.D., Al’rubei M.A. Proektirovanie i tekhnologiya elektronnykh sredstv, 2022, no. 2, pp. 30–34. URL: https://www.elibrary.ru/item.asp?id=50117344
  22. Smolyakov A.V., Podstrigaev A.S. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162661. DOI: 10.34759/trd-2021-121-14‏

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход