Analytical modeling of heat transfer in the elements of the screen-vacuum thermal insulation


DOI: 10.34759/trd-2023-130-04

Аuthors

Pronina P. F.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: proninapf@mai.ru

Abstract

The article deals with analytical modeling of the screen-vacuum thermal insulation elements (SVTIE) for temperature distribution determining in the composite thermal protection coating. Screen-vacuum thermal insulation is widely used in aerospace engineering, namely in the automatic interplanetary stations, spacecraft, satellites, fuel tanks of launch vehicles. The study of this type of thermal insulation is of prime importance for ensuring safety and service life of aerospace complexes elements throughout their lifetime. High reliability requirements are stipulated by the thermal protection operation under conditions of temperature fluctuations and prolonged exposure to solar radiation. The article considers a four-layer structure in the one-dimensional formulation with the solution of the unsteady thermal conductivity problem based on a two-layer homogeneous rod. The four-layer structure represents a package of a glass fabric and aluminum substrate. The structure is being exposed to a temperature field. It is necessary to find the temperature distribution field in the structure under study and determine the stress-strain state caused by the temperature impact. To determine the temperature field, an unsteady thermal conductivity problem for a four-layer homogeneous rod is being solved. The assumption that deformation is being realized in a prismatic body of theoretically infinite length, loaded by the surface and voluminous forces normal to the z-axis, which intensity does not depend on z, is used for stress-strain state. It is assumed as well that the structure deforms as a whole entity, which corresponds to the Feucht model. Shear deformations are also absent. The article presents the graphs of the temperature field and heat flux distribution along the length of the package as a function of time.

Keywords:

screen-vacuum thermal insulation, temperature, stress-strain state

References

  1. Zaletaev V.M. Kosmicheskie issledovaniya, 1970, vol. VIII, no. 4, pp. 636–639.
  2. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata (Calculation of spacecraft heat transfer), Moscow, Mashinostroenie, 1979, pp. 46-78.
  3. Zigel’ R., Khauell Dzh. Teploobmen izlucheniem (Radiant heat transfer), Moscow, Mir, 1975, 234 p.
  4. Kobranov G.P., Tsvetkov A.P., Belov A.I., Sukhnev V.A. Vneshnii teploobmen kosmicheskikh apparatov (External heat exchange of spacecraft), Moscow, Mashinostroenie, 1977, 104 p.
  5. Kozlov L.V., Nusinov M.D. et al. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy (Simulation of thermal regimes of the spacecraft and its environment), Moscow, Mashinostroenie, 1971, 380 p.
  6. Kolesnikov A.V., Serbin V.I. Modelirovanie uslovii vneshnego teploobmena kosmicheskikh apparatov (Simulation of external heat exchange conditions of spacecraft), Moscow, Informatsiya —XXI vek, 1997, 170 p.
  7. Malozemov V.V. Teplovoi rezhim kosmicheskikh apparatov (Thermal regime of spacecraft), Moscow, Mashinostroenie, 1980, 260 p.
  8. Kristans R.M. Vvedenie v mekhaniku kompozitov (Introduction to Mechanics of Composites), Moscow, Mir, 1982, 334 p.
  9. Lur’e A.I. Teoriya uprugosti (Theory of Elasticity), Moscow, Nauka, 1970, 939 p.
  10. Aifantis E.C. The physics of plastic deformation, International Journal of Plasticity, 1987, vol. 3, pp. 211-247. DOI: 10.1016/0749-6419(87)90021-0
  11. Shackelford J.F. Introduction to Material Science for Engineers, New Jersey, Prentice Hall, 2000, 877 p.
  12. Vardoulakis I., Georgiadis H.G. Sh surface waves in a homogeneous gradient-elastic half-space with surface energy, Journal of Elasticity, 1997, vol. 47, pp. 147–165.
  13. S. Li, I. Miskioglu, B.S. Altan. Solution to line loading of a semi-infinite solid in gradient elasticity, International Journal of Solids and Structures, 2004, vol. 41, pp. 3395–3410. DOI: 10.1016/j.ijsolstr.2004.02.010
  14. Ditkin V.A., Prudnikov A.P. Operatsionnoe ischislenie po dvum peremennym i ego prilozheniya (Two-Variable Operational Calculus and its Applications), Moscow, Fizmatlit, 1958, 178 p.
  15. Khatuntseva O.N. Trudy MAI, no. 2022, no. 122. URL:https://trudymai.ru/eng/published.php?ID=164194. DOI: 10.34759/trd-2022-122-07
  16. Khatuntseva O.N. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165492. DOI: 10.34759/trd-2022-123-08
  17. Gorodnov A.O., Laptev I.V. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121008. DOI: 10.34759/trd-2021-116-02
  18. Lur’e S.A., Shramko K.K. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161414. DOI: 10.34759/trd-2021-120-02
  19. Benderskii B.Ya., Chernova A.A. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115121. DOI: 10.34759/trd-2020-111-5
  20. Pronina P.F., Tushavina O.V., Shumskaya S.A., Egorova M.S. Teplovye protsessy v tekhnike, 2022, vol. 14, no. 8, pp. 348-353.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход