Comparative analysis of interpolation methods in evaluation of the frequency of a discretized harmonic signal


DOI: 10.34759/trd-2023-130-15

Аuthors

Alrubei M. A.

State University named after Alexander and Nikolay Stoletovs, 87, Gorky str. Vladimir, 600000, Russia

e-mail: inj.moh3@atu.edu.iq

Abstract

Accurate and efficient signal frequency measurement is an important signal processing task in many technical applications, such as radio electronics and communication systems, modern information transmission systems, research and medical, radio navigation and radar systems, monitoring of electronic equipment. Stand-alone frequency counters use discrete counting and interpolation methods, while embedded control systems employ spectral analysis methods using fast Fourier transform (FFT) with the largest spectral component determination and interpolation along two or three spectral lines.

The article considers the effect of additive stationary noise on the estimate of a periodic signal frequency from the spectrum obtained by the direct Fourier transform application to an array of discrete samples, that is, during transition from the time domain to the frequency domain. Frequency estimation methods may be divided into the groups of signal representation in both time and frequency domains. Discrete counting and interpolation methods are most widely used in the time domain, as well as in the frequency spectral analysis using FFT algorithms for maximum spectral component determining and successive maximum coordinate correcting using mathematical transformations, such as interpolation. To reduce the effect of spectral leakage or spectrum deviation, time sequence smoothing is used through multiplying all signal samples by window function weights. The interpolation algorithms being used were modeled, and a modified formula that allows accuracy increasing of the frequency estimate by several fold was proposed.

The interpolation method is the most widely used, in-depth and most wide-spread correction method in the analysis of a discrete spectrum with error estimates depending on the number of samples and the number of spectral lines accounted for. In practical engineering applications, the most important indicators for the quality assessing of an algorithm are the ability to work in noise, speed, and low frequency estimation error.

Based on a brief review of the state of theoretical research and development of interpolation methods for correcting the maximum sample position, the principles and characteristics of the interpolation algorithms currently used are presented. Characteristics of each algorithm are examined by simulation and interpolation errors are analyzed.

Keywords:

frequency measurement methods, interpolation method, fast Fourier transform, algorithm, frequency estimation, window function

References

  1. WANG Xiaoping, HUANG Xiangmei. Measurement of interharmonics in power network based on all phase FFT time shifting and phase difference, Journal of Chongqing University, 2012, vol. 35 (3), pp. 81–84.
  2. Shen Ting-ao, et al. A novel adaptive frequency estimation algorithm based on interpolation FFT and improved adaptive notch filter, Measurement Science Review, 2017, vol. 17.1, pp. 48-52. ‏ DOI: 10.1515/msr-2017-0006
  3. Luo Jiufei, Zhijiang Xie, Ming Xie. Frequency estimation of the weighted real tones or resolved multiple tones by iterative interpolation DFT algorithm, Digital signal processing, 2015, vol. 41, pp. 118-129.‏ DOI: 10.1016/j.dsp.2015.03.002
  4. Xiao Hung, Yang Yong, Xie Ming, Luo Jiufei. A review of interpolation algorithms in the discrete spectrum correction and a comparative study of their accuracy under strong noise, Chongqing University Journal, 2017, vol. 40, issue (8), pp. 27-36. DOI: 10.11835/j. issn. 1000-582X. 2017
  5. Luo Jiufei, Zhijiang Xie, Ming Xie. Interpolated DFT algorithms with zero padding for classic windows, Mechanical Systems and Signal Processing, 2016, vol. 70, pp. 1011-1025.‏ DOI: 10.1016/j.ymssp.2015.09.045
  6. Chen Hong et al. Automatic correcting method of discrete spectrum with rectangular window, 4th International Congress on Image and Signal Processing, 2011, vol. 5, IEEE.‏ DOI: 10.1109/CISP.2011.6100714
  7. Pozdnyakov A.D., Pozdnyakov V.A. Biomeditsinskie tekhnologii i radioelektronika, 2004, no. 3, pp. 41-45.
  8. Al’rubei M.A., Pozdnyakov A.D., Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Fundamental and applied approaches to solving scientific problems». Ufa, NITs Vestnik nauki, 2023, pp. 47.
  9. Pozdnyakov A.D., Al’rubei M.A. Proektirovanie i tekhnologiya elektronnykh sredstv, 2022, no. 2, pp. 30–34.
  10. Belega Daniel, Dominique Dallet, Dario Petri. Accuracy of the normalized frequency estimation of a discrete-time sine-wave by the energy-based method, IEEE Transactions on Instrumentation and Measurement, 2011, vol. 61 (1), pp. 111-121.‏ DOI: 10.1109/TIM.2011.2159318
  11. Al’rubei M.A., Pozdnyakov A.D. XV Mezhdunarodnaya nauchnaya konferentsiya «Fizika i radioelektronika v meditsine i ekologii»: tezisy dokladov. Aleksandrov, OOO «Grafika», 2022, pp. 173-176.
  12. Serov A.N., Shatokhin A.A. Voprosy primeneniya tsifrovoi obrabotki signalov, 2018, vol. 8, no. 4, pp 79-84.
  13. Pozdnyakov A.D. Proektirovanie i tekhnologiya elektronnykh sredstv, 2005, no. 1, pp. 47-50.
  14. Belega D., Petri D. Frequency estimation by two- or three-point interpolated Fourier algorithms based on cosine windows, Signal Process, 2017, vol. 117, pp. 115–125. DOI: 10.1016/j.sigpro.2015.05.005
  15. Belega D., Petri D. Sine-wave parameter estimation by interpolated DFT method based on new cosine windows with high interference rejection capability, Digit’ Signal Process, 2014, vol. 33, pp. 60–70. DOI: 10.1016/j.dsp.2014.07.003
  16. Al’rubei M.A., Pozdnyakov A.D. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173027. DOI: 10.34759/trd-2023-129-15
  17. Vais S.N., Repina M.V. Trudy MAI, 2014, no. 74. URL: https://trudymai.ru/eng/published.php?ID=49333
  18. Gnezdilov D.S. et al. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 9.3-1, pp. 124-126.
  19. Pyrkin Anton A. et al. Frequency estimation for periodical signal with noise in finite time, 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, 2011.‏ DOI:10.1109/CDC.2011.6160655
  20. Reisenfeld Sam, Elias Aboutanios. A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise, IEEE Communications letters, 2003, vol. 7.11, pp. 549-551.‏ DOI:10.1109/LCOMM.2003.815637
  21. Andria Gregorio, Mario Savino, Amerigo Trotta. Windows and interpolation algorithms to improve electrical measurement accuracy, IEEE Transactions on Instrumentation and Measurement, 1989, vol. 38.4, pp. 856-863.‏ DOI: 10.1109/19.31004
  22. Hidalgo Roberto Marcelo, et al. A simple adjustable window algorithm to improve FFT measurements, IEEE Transactions on Instrumentation and Measurement, 2002, vol. 51.1, pp. 31-36.‏ DOI: 10.1109/19.989893
  23. Jain Vijay K., William L. Collins, David C. Davis. High-accuracy analog measurements via interpolated FFT, IEEE Transactions on Instrumentation and Measurement,1979, vol. 28.2, pp. 113-122.‏‏ DOI:10.1109/TIM.1979.4314779
  24. Belega Daniel, Dominique Dallet. Multifrequency signal analysis by interpolated DFT method with maximum sidelobe decay windows, Measurement, 2009, vol. 42.3, pp. 420-426.‏ DOI: 10.1016/j.measurement.2008.08.006
  25. Eric Jacobsen, Peter Kootsookos. Fast, Accurate Frequency Estimators, IEEE Signal Processing Magazine, 2007, vol. 24, issue 3, pp. 123-125. DOI:10.1109/MSP.2007.361611
  26. Ding K., Zheng C., Yang Z. Frequency Estimation Accuracy Analysis and Improvement of Energy Barycenter Correction Method for Discrete Spectrum, Journal of Mechanical Engineering, 2010, vol. 46, no. 5, pp. 43-48. DOI: 10.3901/JME.2010.05.043
  27. Gnezdilov D.S., Matveev B.V. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 9, no. 2, pp. 37-39.
  28. Harris Fredrick J. Using Windows for Discrete Fourier Transform Harmonic Analysis, IEEE, 1978, vol. 66, no. 1. DOI: 10.1109/PROC.1978.10837
  29. Smolyakov A.V., Podstrigaev A.S. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162661. DOI: 10.34759/trd-2021-121-14.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход