Dynamics and control of cylindrical space debris during contactless ion beam assisted transportation


DOI: 10.34759/trd-2023-131-04

Аuthors

Ledkov A. S.

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

e-mail: ledkov@inbox.ru

Abstract

Space debris poses a serious threat to existing and newly launched spacecraft. One of the prospective ways to this problem solving consists in creation of contactless transportation systems based on the ion beam application generated by the electric thruster of an active spacecraft to affect a space debris object. The purpose of the work is efficiency increasing of the space debris ion beam assisted transportation by accounting for its motion relative to the center of mass specifics. The author developed mathematical models describing a space debris object motion under the impact of gravitational and ion forces, as well as torques for the plane and spatial cases. The study of the unperturbed motion of a space debris object in a circular orbit was performed. The author proposed the ion bean control laws ensuring the space debris stabilization in the equilibrium position and its transition to the required angular motion mode. Angular modes of the unperturbed motion, at which generated ion force was maximum and minimum were determined. Numerical modeling of the space debris object disorbiting was performed, and estimation of the fuel consuming necessary for this transportation operation accomplishing was given. For the space debris object being considered, the difference in fuel between the most favorable and unfavorable angular motion modes was 7.82%.

Keywords:

space debris, ion beam, contactless transportation, active removal, fuel costs

References

  1. McKnight D. et al. Identifying the 50 statistically-most-concerning derelict objects in LEO, Acta Astronautica, 2021, vol. 181, no. January, pp. 282–291. DOI: 10.1016/j.actaastro.2021.01.021
  2. Kessler D.J., Cour-Palais B.G. Collision frequency of artificial satellites: The creation of a debris belt, Journal of Geophysical Research, 1978, vol. 83, № A6, pp. 2637–2646. DOI: 10.1029/JA083iA06p02637
  3. Barkova M.E. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168147. DOI: 10.34759/trd-2022-125-01
  4. Bonnal C. et al. CNES technical considerations on space traffic management, Acta Astronautica, 2020, vol. 167, pp. 296–301. DOI: 10.1016/j.actaastro.2019.11.023
  5. Bonnal C. et al. Just in time collision avoidance — A review, Acta Astronautica, 2020, vol. 170, pp. 637–651. DOI: 10.1016/j.actaastro.2020.02.016
  6. Kawamoto S. et al. Impact on collision probability by post mission disposal and active debris removal, Journal of Space Safety Engineering, 2020, vol. 7, no. 3, pp. 178–191. DOI: 10.1016/j.jsse.2020.07.012
  7. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no 100. URL: http://trudymai.ru/eng/published.php?ID=93299
  8. Ledkov A., Aslanov V. Review of contact and contactless active space debris removal approaches, Progress in Aerospace Sciences, 2022, vol. 134, pp. 100858. DOI: 10.1016/j.paerosci.2022.100858
  9. Mark C.P., Kamath S. Review of Active Space Debris Removal Methods, Space Policy, 2019, vol. 47, pp. 194–206. DOI: 10.1016/j.spacepol.2018.12.005
  10. Aslanov V.S. Gravitational Trap for Space Debris in Geosynchronous Orbit, Journal of Spacecraft and Rockets, 2019, vol. 56, no. 4, pp. 1277–1281. DOI: 10.2514/1.A34384
  11. Aslanov V., Yudintsev V. Motion Control of Space Tug During Debris Removal by a Coulomb Force, Journal of Guidance, Control, and Dynamics, 2018, vol. 41, no. 7, pp. 1476–1484. DOI: 10.2514/1.G003251
  12. Ledkov A.S., Belov A.A., Tchanikov I.A. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170321. DOI: 10.34759/trd-2022-127-01
  13. Bombardelli C., Pelaez J. Ion Beam Shepherd for Contactless Space Debris Removal, Journal of Guidance, Control, and Dynamics, 2011, vol. 34, no. 3, pp. 916–920. DOI: 10.2514/1.51832
  14. Kitamura S. Large space debris reorbiter using ion beam irradiation, 61 st International Astronautical Congress, Prague, Czech Republic, 2010.
  15. Ruault J.M. et al. Active Debris Removal (ADR): From identification of problematics to in flight demonstration preparation, 1st European Workshop On Active Debris Removal, Paris, June, 2010.
  16. Ruiz M. et al. The FP7 LEOSWEEP project: Improving low earth orbit security with enhanced electric propulsion, Space Propulsion Conference, 2014, pp. 35–42.
  17. Redka M.O., Khoroshylov S. V. Determination of the Force Impact of an Ion Thruster Plume on an Orbital Object Via Deep Learning, Space Science and Technology, 2022, vol. 28, no. 5, pp. 15–26. DOI: 10.15407/knit2022.05.015
  18. Merino M. et al. Hypersonic Plasma Plume Expansion in Space, 32nd International Electric Propulsion Conference, 2011, pp. 1–14.
  19. Dannenmayer K. et al. Hall Effect Thruster Plasma Plume Characterization with Probe Measurements and Self-Similar Fluid Models, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Virigina: American Institute of Aeronautics and Astronautics, 2012, pp. 1–10. DOI: 10.2514/6.2012-4117
  20. Cichocki F., Merino M., Ahedo E. Modeling and simulation of EP plasma plume expansion into vacuum, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014, pp. 1–17. DOI: 10.2514/6.2014-3828
  21. Nakajima Y. et al. Contactless space debris detumbling: A database approach based on computational fluid dynamics, Journal of Guidance, Control, and Dynamics, 2018, vol. 41, no. 9, pp. 1906–1918. DOI: 10.2514/1.G003451
  22. Ryazanov V.V., Ledkov A.S. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika, 2019, vol. 19, no. 1, pp. 82–93. DOI: 10.18500/1816-9791-2019-19-1-82-93
  23. Bombardelli C. et al. Relative dynamics and control of an ion beam shepherd satellite, Advances in the Astronautical Sciences, 2012, vol. 143, pp. 2145–2157.
  24. Alpatov A., Khoroshylov S., Bombardelli C. Relative control of an ion beam shepherd satellite using the impulse compensation thruster, Acta Astronautica, 2018, vol. 151, pp. 543–554. DOI: 10.1016/j.actaastro.2018.06.056
  25. Khoroshylov S. Relative control of an ion beam shepherd satellite in eccentric orbits, Acta Astronautica, 2020, vol. 176, pp. 89–98. DOI: 10.1016/j.actaastro.2020.06.027
  26. Ryazanov V.V. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107837
  27. Khoroshylov S. Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations, Acta Astronautica, 2019, vol. 164, pp. 254–261. DOI: 10.1016/j.actaastro.2019.08.016
  28. Petukhov V.G., Ryazanov V.V. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2021, vol. 21, no. 2, pp. 202–212. DOI: 10.18500/1816-9791-2021-21-2-202-212
  29. Urrutxua H., Bombardelli C., Hedo J.M. A preliminary design procedure for an ion-beam shepherd mission, Aerospace Science and Technology, 2019, vol. 88, pp. 421–435. DOI: 10.1016/j.ast.2019.03.038
  30. Cichocki F. et al. Electric propulsion subsystem optimization for «Ion Beam Shepherd» missions, Journal of Propulsion and Power, 2017, vol. 33, no. 2, pp. 370–378. DOI: 10.2514/1.B36105
  31. Obukhov V.A. et al. Problematic issues of spacecraft development for contactless removal of space debris by ion beam, Acta Astronautica, 2021, vol. 181, pp. 569–578. DOI: 10.1016/j.actaastro.2021.01.043
  32. Colpari R. et al. Conceptual analysis for a technology demonstration mission of the ion beam shepherds, CEAS Space Journal, 2023, vol. 15, no. 4, pp. 567-584. DOI: 10.1007/s12567-022-00464-x
  33. Goncharov P.S., Kopeika A.L., Babin A.M. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168995. DOI: 10.34759/trd-2022-126-09
  34. Alpatov A.P., Maslova A.I., Khoroshilov S.V. Beskontaktnoe udalenie kosmicheskogo musora ionnym luchom. Dinamika i upravlenie, Mauritius: LAP LAMBERT Academic Publishing, 2018, 345 p.
  35. Li H., Li J., Jiang F. Dynamics and control for contactless interaction between spacecraft and tumbling debris, Advances in Space Research, 2018, vol. 61, no. 1, pp. 154–166. DOI: 10.1016/j.asr.2017.10.008
  36. Nakajima Y. et al. Efficiency Improving Guidance for Detumbling of Space Debris Using Thruster Plume Impingement, IEEE Aerospace Conference Proceedings, 2020, pp. 1–12. DOI: 10.1109/AERO47225.2020.9172511
  37. Aslanov V., Ledkov A. Attitude Dynamics and Control of Space Debris During Ion Beam Transportation, Cambridge: Elsevier, 2022. 320 p.
  38. Markeev A.P. Teoreticheskaya mekhanika (Theoretical mechanics), Moscow-Izhevsk, Regulyarnaya i khaoticheskaya dinamika, 2007, 592 p.
  39. Aslanov V.S., Ledkov A.S. Space debris attitude control during contactless transportation in planar case, Journal of Guidance, Control, and Dynamics, 2020, vol. 43, no. 3, pp. 451–461. DOI: 10.2514/1.G004686
  40. Ledkov A.S., Aslanov V.S. Active space debris removal by ion multi-beam shepherd spacecraft, Acta Astronautica, 2023, vol. 205, pp. 247–257. DOI: 10.1016/j.actaastro.2023.02.003
  41. Šilha J. et al. Apparent rotation properties of space debris extracted from photometric measurements, Advances in Space Research, 2018, vol. 61, no. 3, pp. 844–861. DOI: 10.1016/j.asr.2017.10.048
  42. Pardini C., Anselmo L. Evaluating the environmental criticality of massive objects in LEO for debris mitigation and remediation, Acta Astronautica, 2018, vol. 145, pp. 51–75. DOI: 10.1016/j.actaastro.2018.01.028
  43. Aslanov V.S., Ledkov A.S. Fuel costs estimation for ion beam assisted space debris removal mission with and without attitude control, Acta Astronautica, 2021, vol. 187, pp. 123–132. DOI: 10.1016/j.actaastro.2021.06.028

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход