Numerical study of the engine-propeller combination of the unmanned aerial vehicle with the propeller integrated into the engine


DOI: 10.34759/trd-2023-131-11

Аuthors

Vavilov V. E.*, Ismagilov F. R., Mustaev E. I.**, Urazbakhtin R. R.

Ufa University of Science and Technology, 32, Zaki Walidi str., Ufa, 450076, Russia

*e-mail: s2_88@mail.ru
**e-mail: edgar.mustaev@mail.ru

Abstract

The article presents a proposal for application of the improved engine-propeller group with the airscrew integrated into the electric motor in the multi-rotor type unmanned aerial vehicles. The authors performed a check-up aimed at confirming the proposed technical solution operability, which was realized by the presented modification comparison with classical scheme of the engine-propeller group. The juxtaposition was being accomplished by the aerodynamic characteristics of the airscrew in the hovering mode by the computational hydro-gas-dynamics methods with the STAR CCM+ and ANSYS CFX application software. Numerical modeling was performed in the 3D setting and based on solving the system of Reynolds-averaged Navier-Stokes equations, which were closed using the turbulence models of the K-Epsilon family. The airscrew rotation was described by the moving frame of reference without the grid changing. The data obtained from the mathematical study indicate a non-critical reduction in the lifting force of the improved scheme of the engine-propeller combination group compared to the traditional one, and are fixed at 3.9% and 2.5% in ANSYS CFX and STAR CCM+, respectively. The drag torque of the airscrewof the modified scheme increased by 0.741% relative to the classical one when modeled in the STAR CCM+, and decreased by 0.944% when modeled in the ANSYS CFX. The proposed scheme weight herewith, computed in SolidWorks, decreased by 8%. The results of the performed check-up are satisfactory and prove the applicability of the improved scheme of the engine-propeller combination in unmanned aerial systems to increase their reliability, as well as reduce weight and dimensions without the risk of malfunctions in their operation.

Keywords:

numerical modelling, engine-propeller combination, unmanned aerial vehicle, multirotor, Reynolds-averaged Navier-Stokes

References

  1. Suomalainen A. Bespilotniki: avtomobili, drony, mul’tikoptery (Drones: cars, UAVs, multicopters), Moscow, DMK Press, 2018, 120 p.
  2. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26768
  3. Yatsenkov V.S. Tvoi pervyi kvadrokopter: teoriya i praktika. (Your first quadcopter: theory and practice), Saint-Petersburg, BKhV-Peterburg, 2016, 256 p.
  4. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26767
  5. Kilby T., Kilby B. Getting Started with Drones. San Francisco, California, Make: Community, 2015, 204 p.
  6. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26769
  7. Beiktal D. Building Your Own Drones: A Beginner’s Guide to Drones, UAVs and ROVs. Indianapolis, Indiana, QUE Publishing, 2015, 272 p.
  8. Agaev F.G., Asadov Kh.G., Aslanova A.B. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156313. DOI: 10.34759/trd-2021-117-16
  9. Beiktal D. Robot Builder: The Beginner’s Guide to Building Robots. Indianapolis, Indiana, QUE Publishing, 2014, 408 p.
  10. Gololobov V.N., Ul’yanov V.I. Bespilotniki dlya lyuboznatel’nykh (Drones for the curious), Saint-Petersburg, Nauka i tekhnika, 2018, 256 p.
  11. Bruyaka V.A., Fokin V.G., Soldusova E.A., Glazunova N.A. Adeyanov I.E. Inzhenernyi analiz v ANSYS Workbench. Ch.1. (Engineering analysis in ANSYS Workbench. Part 1), Samara, Samarskii gosudarstvennyi tekhnicheskii universitet, 2010, 271 p.
  12. Bruyaka V.A., Fokin V.G., Kuraeva Ya.V. Inzhenernyi analiz v ANSYS Workbench. Ch.2. (Engineering analysis in ANSYS Workbench. Part 2), Samara, Samarskii gosudarstvennyi tekhnicheskii universitet, 2013, 149 p.
  13. Basov K.A. ANSYS: spravochnik pol’zovatelya (ANSYS: user guide), Moscow, DMK Press, 2005, 640 p.
  14. Chigarev A.V., Kravchuk A.S., Smalyuk A.F. ANSYS dlya inzhenerov: Spravochnoe posobie (ANSYS for engineers: A reference manual), Moscow, Mashinostroenie-1, 2004, 512 p.
  15. ANSYS CFX-Solver Theory Guide, Release 22, ANSYS Inc, USA, 2022.
  16. Wilcox D.C. Turbulence Modeling for CFD. California, DCW Industries, 2006, 522 p.
  17. Kutateladze S.S, Leont’ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and mass transfer and friction in a turbulent boundary layer), Moscow, Energiya, 1972, 342 p.
  18. Budanova S.Yu., Krasavin E.E., Nikitchenko Yu.A. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng/published.php?ID=116323. DOI: 10.34759/trd-2020-112-3
  19. Simcenter STAR-CCM+ Documentation. Version 2022.1. Simcenter Digital Industries Software, 2022.
  20. Garbaruk A.B. Techeniya vyazkoi zhidkosti i modeli turbulentnosti: metody rascheta turbulentnykh techenii (Viscous fluid flows and turbulence models: methods for calculating turbulent flows), Saint-Petersburg, Sankt-Peterburgskii gosudarstvennyi politekhnicheskii universitet, 2007, 127 p.
  21. Kritskii B.S., Makhnev M.S., Mirgazov R.M., Subbotina P.N., Trebunskikh T.V. Nauchnyi Vestnik MGTU GA, 2016, no. 223 (1), pp. 77-83.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход