The influence of geometry on a supersonic laminar flow past a blunt-fin body mounted on a plate

DOI: 10.34759/trd-2023-131-12


Babich E. V.*, Kolesnik E. V.

Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia



The study of the flow structure near an obstacle mounted on a streamlined surface and the correct prediction of heat transfer characteristics is important both for practical purposes, in particular, in the aerospace industry, and in fundamental and theoretical respects. Such flow results in a highly three-dimensional flow pattern, which includes an elongated flow separation region containing a set of horseshoe-shaped vortices and a complex shock-wave interaction. This paper presents the results of a numerical solution of the problem of supersonic flow past a blunt fin mounted on a plate with a developing boundary layer. In most works on this topic, the flow around bodies of simple geometry is studied, however, objects with a more complex configuration are of interest for practical purposes. This work, which is a continuation of research [12], is devoted to studying the influence of the geometric shape of the obstacle (slope angle, shape of the leading edge) on the flow structure and local heat transfer characteristics; herewith cases of flow leakage at different angles of attack are considered. In our calculations, we used the SINF/Flag-S finite-volume unstructured code developed at Peter the Great St. Petersburg Polytechnic University. We solved the complete 3D Navier—Stokes equations for a thermally and calorically perfect gas.

According to the research, in supersonic flow around a body mounted on a plate, such changes in the geometric configuration as narrowing of the leading edge, a decrease in the slope angle, and asymmetric flow lead to a reduction in thermal loads caused by the effects of viscous-inviscid interaction.


high-speed flows, viscous-inviscid interaction, horseshoe-shaped vortices, numerical simulation


  1. M’int Z.M., Khlopkov A.Yu. Trudy MAI, 2013, no. 66. URL:
  2. Kolychev A.V. Trudy MAI, 2012, no. 51. URL:
  3. Savitskii D.V., Aksenov A.A., Zhluktov S.V. Trudy MAI, 2018, no. 101. URL:
  4. Korkegi R.H. Survey of viscous interactions associated with high Mach number flight, AIAA Journal, 1971, vol. 9, no. 5, pp. 771-784. DOI: 10.2514/3.6275
  5. Voitenko D.M., Zubkov A.I., Panov Yu.A. Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1966, no. 1, pp. 121.
  6. Aduevskii B.C., Medvedev K.I. Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1967, no. 1, pp. 25–34.
  7. Teterin M.P. Izvestiya AN SSSR. Mekhanika zhidkosti i gaza, 1967, no. 2, pp. 143–147.
  8. Dolling D.S., Bogdonoff S.M. Blunt fin-induced shock wave/turbulent boundary-layer interaction, AIAA Journal, 1982, vol. 20, no. 12, pp. 1674–1680.
  9. Oliveira M., Liu C. Implicit LES for Shock/Blunt Body Interaction, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010. DOI: 10.2514/6.2010-874
  10. Tutty O.R., Roberts G.T., Schuricht P.H. High-speed laminar flow past a fin-body junction, Journal of Fluid Mechanics, 2013, vol. 737, pp. 19–55. DOI: 10.1017/jfm.2013.541
  11. Zhuang Y.Q., Lua X.Y. Quasi-periodic Aerodynamic Heating in Blunt-fin Induced Shock Wave/Boundary Layer Interaction, Procedia Engineering, 2015, vol. 126, pp. 134–138. DOI: 10.1016/j.proeng.2015.11.195
  12. Mortazavi M. Knight D.D. Shock Wave Laminar Boundary Layer Interaction at a Hypersonic Flow Over a Blunt Fin-Plate Junction, // 55th AIAA Aerospace Sciences Meeting Conference, 2017. DOI:10.2514/6.2017-0536
  13. Mortazavi M. Knight D.D. Numerical Simulation of Shock Wave/Laminar Boundary Layer Interaction Over a Blunt Geometry, 7TH European Conference for Aeronautics and Aerospace Sciences (EUCASS), 2017. DOI: 10.13009/EUCASS2017-65
  14. Mortazavi M. Knight D.D. Numerical Investigation of the Effect of the Sweep Angle of a Cylindrical Blunt Fin on the Shock Wave/Laminar Boundary Layer Interaction in a Hypersonic Flow, 47th AIAA Fluid Dynamics Conference, 2017. DOI: 10.2514/6.2017-3462
  15. Kolesnik E.V., Smirnov E.M. Zhurnal tekhnicheskoi fiziki, 2020, vol. 90, no. 2, pp. 185-192. DOI: 10.21883/JTF.2020.02.48807.263-19
  16. Lindorfer S.A., Combs C.S., Kreth P.A., Schmisseur J.D. Numerical Simulations of a Cylinder-Induced Shock Wave/Boundary Layer Interaction, 55th AIAA Aerospace Sciences Meeting, 2017, vol. 0534, pp 1-22. DOI: 10.2514/6.2017-0534
  17. Borovoy V., Mosharov V., Radchenko V., Skuratov A. The shock-waves interference in the flow around a cylinder mounted on a blunted plate, 7th European Conference for Aeronautics and Space Sciences (EUCASS), 2017, Report 2017-63, pp. 1–8. DOI: 10.13009/EUCASS2017-63
  18. Kolesnik E.V, Smirnov E.M., Smirnovskii A.A. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki, 2019, vol. 12, no. 2, pp. 7-22. DOI: 10.18721/JPM.12201
  19. Liou M.S, Steffen C.J. A New Flux Splitting Scheme, Journal of Computational Physics, 1993, vol. 107, no. 1, pp. 23-39. DOI: 10.1006/JCPH.1993.1122
  20. van Leer B. Towards the Ultimate Conservative Difference Scheme V. A Second-Order Conservative Difference Scheme. Sequel to Godunov’s Method, Journal of Computational Physics, 1979, vol. 32, no. 1, pp. 101-136. DOI: 10.1016/0021-9991(79)90145-1
  21. Harten A. High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 1983, vol. 49, no. 3, pp. 357-393. DOI: 10.1016/0021-9991(83)90136-5
  22. van Albada G. D, van Leer B., Roberts W.W. A Comparative Study of Computational Methods in Cosmic Gas Dynamics. Upwind and High-Resolution Schemes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 95-103. DOI: 10.1007/978-3-642-60543-7_6

Download — informational site MAI

Copyright © 2000-2024 by MAI