Predictional mathematical models of thin-film elements of microassembly


DOI: 10.34759/trd-2023-131-14

Аuthors

Piganov M. N.*, Kulikov A. V.**, Novomeisky D. N.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: kipres@ssau.ru
**e-mail: avksam@mail.ru
***e-mail: dmitr.novomejscky@yandex.ru

Abstract

The lion share of the onboard equipment failures (up to 70%) is stipulated by the inadequate reliability of the onboard equipment electronic parts base.

One of the effective ways to improve the onboard radio-electronic systems quality consists in selecting highly reliable elements and components based on the results of diagnostic control or individual prediction (IP) of their future state. This is especially true for the devices and elements, such as thin-film microassemblies with high-precision resistors and capacitors.

One of the most important operations in such microassemblies manufacturing is the thin-film elements trimming to the nominal value. However, this trimming operation often introduces a perturbing effect into their structure, which reduces the temporal stability and reliability of these elements. This makes the procedure for rejecting potentially unreliable elements and selecting high-quality samples for the onboard equipment (the IP based) especially up-to-date. Mathematical models are proposed for individual prediction of quality and reliability indicators of microassembly thin-film resistors and capacitors.

An expert survey was conducted to select the forecasting method. With account fort the fact that informative parameters were previously identified for the class of microassemblies and thin-film elements under study, the following methods of pattern recognition theory were selected as the main ones: the method of discriminant functions, potential and regression functions (models), as well as the extrapolation method. The latter was emplooyed for the case of low information content of the parameters.

Forecasting effectiveness estimate based on the proposed models is presented. The developed models are recommended to be applied for solving problems of individual prediction of elements with classification.

Keywords:

predictive mathematical model, prediction, efficiency, analysis of thin film resistors, capacitor, microassembly, on-board device

References

  1. Ezrokhi Yu.A., Kalenskii S.M. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165500. DOI: 34759/trd-2022-123-23
  2. Volkov A.S. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171396. DOI: 34759/trd-2023-128-12
  3. Fedorov V.K., Sergeev N.P., Kondrashin A.A. Kontrol’ i ispytaniya v proektirovanii i proizvodstve radioelektronnykh sredstv, (Monitoring and testing while electronic equipment design and manufacturing), Moscow, Tekhnosfera, 2005, 504 p.
  4. Bayushev S.V. V Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Aktual’nye problemy raketno-kosmicheskoi tekhniki» (V Kozlovskie chteniya): sbornik materialov. Samara, Samarskii nauchnyi tsentr RAN, 2017, vol. 2, pp. 168 — 176.
  5. Kruchinin M.M., Kuz’min D.A Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77093
  6. Pavlov P.V., Popov F.N. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=76780
  7. Bykov A.P., Piganov M.N. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121012. DOI: 34759/trd-2021-116-05
  8. Blinov A.V., Razumov D.A. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164270. DOI: 34759/trd-2022-122-17
  9. Pis’marov A.V., Kirpichev V.A., Sazanov V.P. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167004. DOI: 34759/trd-2022-124-09
  10. Belyaev B.V., Lebedev A.S. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168167. DOI: 34759/trd-2022-125-08
  11. Belous A.I., Solodukha V.A., Shvedov S.V. Kosmicheskaya elektronika (Space electronics), Moscow, Tekhnosfera, 2015, Book 2, 696 p.
  12. Piganov M.N. Tekhnologicheskie osnovy obespecheniya kachestva mikrosborok (Technological bases of quality assurance of microassemblies), Samara, SGAU, 1999, 231 p.
  13. Mishanov R.O., Piganov M.N. Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 2017, vol. 20, no. 2, pp. 55-63.
  14. Tyulevin S.V., Piganov M.N. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2008, no. 1, pp. 92-96.
  15. Mishanov R.O., Tyulevin S.V., Piganov M.N., Erantseva E.S. Forecasting models generation of the electronic means quality, CEUR Workshop Proceedings, 2017, pp. 124-129. DOI: 18287/1613-0073-2017-1904-124-129
  16. Tyulevin S.V., Piganov M.N., Erantseva E.S. Nadezhnost’ i kachestvo slozhnykh system, 2014, no. 1 (5), pp. 9-17.
  17. Mishanov, R.O. Izvestiya Samarskogo nauchnogo tsentra RAN, 2017, vol. 19, no. 1 (2), pp. 414-419.
  18. Tyulevin S.V., Piganov M.N., Erantseva E.S. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost’ i kachestvo», Penza, Izd-vo PGU, 2014, vol. 2, pp. 277-281.
  19. Mishanov R.O., Piganov M.N. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 4 (3), pp. 594-599.
  20. Bykov A.P., Piganov M.N. Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 2021, vol. 24, no. 1, pp. 58-69. DOI: 18469/18 10-3189.2021.24.1.39-47

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход