Mathematical modeling of a free form inertial naigation system for airborne radar stations


DOI: 10.34759/trd-2023-131-20

Аuthors

Sentsov A. A.1*, Korotkov V. A.2**, Ivanov S. A.3, Turnetskaya E. L.1

1. Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia
2. PJSC CRPA «Leninets», St. Petersburg, Russia
3. Saint-Petersburg State University of Economics, 21, Sadovaya str., Saint-Petersburg, 191023, Russia

*e-mail: toxx@list.ru
**e-mail: korotkovva@npo-lininetz.ru

Abstract

Digital technologies implementation in the sphere of complex technical systems control has led to the advent of the cyber-physical systems (CPS) concepts and digital twins (DT). The DT basic element is the digital model (DM) of the CPS. Requirements to the DM characteristics are being confirmed while tests, verification and validation, to which ensuring the problems of substantiating the list of the DM characteristics and developing methods for their assessment are being solved. The article substantiates the choice of completeness and veracity of the DM as its target characteristics. A method for their assessment by the characteristics of the accuracy of the of the CPS properties estimates obtained with the DM, and the weighting coefficients determined employing multiple regression analysis of the DM application results is proposed. The said method is based on the analysis of the CPS target function, due to which the criterion applied in assessing veracity receives an obvious physical meaning. The proposed method may be employed for solving the problems of the DT structural and parametric synthesis, as well as analyzing their functioning effectiveness at all stages of the CPS life cycle. The result of the training stage is analytical models of the CPS characteristics, which can be used in optimization algorithms without significant requirements for computing resources. The training sample can be replenished while the DT exploitation which increases the accuracy of the DM characteristics assessment at various stages of the CPS life cycle. The adequacy of the method is confirmed by the presented in the article example of the DM characteristics evaluating of an angular motion control system with flywheel engines.

Keywords:

radar station, inertial sensor, satellite navigation system, inertial measuring unit

References

  1. Dorosinskii L.G., Trukhin M.P. Teoriya i praktika obrabotki signalov ot prostranstvenno-raspredelennykh tselei (Theory and practice of signal processing from spatially distributed targets), Moscow, Zebra, 2015, 244 p.
  2. Petrov I. D., Sentsov A. A., Ivanov S. A. Feature Extraction and Recognition of Aerial Objects using Echo Signals Received by Radar, 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2021, pp. 1–4. DOI: 10.1109/WECONF51603.2021.9470565
  3. Bratkov V.A., Sentsov A.A., Polyakov V.B. Radiopromyshlennost’, 2020, no. 30 (2), pp. 42-48. DOI: 10.21778/2413-9599-2020-30-2-42-48
  4. Proskurin V.I., Yagol’nikov S.V., Shevchuk V.I. Radiolokatsionnoe nablyudenie. Metody, modeli, algoritmy (Radar observation. Methods, models, algorithms), Moscow, Radiotekhnika, 2017, 368 p.
  5. Sentsov A.A. Voprosy radioelektroniki: seriya RLT, 2010, vol. 2, no. 1, pp. 145-153.
  6. Sentsov A.A. Voprosy radioelektroniki: seriya RLT, 2011, vol. 1, no. 5, pp. 137-146.
  7. Anan’ev A.V., Ivannikov K.S., Filatov S.V. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168188. DOI: 10.34759/trd-2022-125-16
  8. Dzhigan V.I. Adaptivnaya fil’tratsiya signalov: teoriya i algoritmy (Adaptive filtering of signals: theory and algorithms), Moscow, Tekhnosfera, 2013, 528 p.
  9. Apollonov D.V., Bibikova K.I., Shibaev V.M., Efimova I.E. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164299. DOI: 10.34759/trd-2022-122-23
  10. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh (Information processing in navigation systems), Moscow, Mashinostroenie, 1991, 511 p.
  11. Dmitriev V.I., Zvonarev V.V., Lisitsyn Yu.E. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng/published.php?ID=116566. DOI: 10.34759/trd-2020-112-16
  12. Starovoitov E.I., Yurchik I.A. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109500. DOI: 10.34759/trd-2019-108-10
  13. Kharin E.G. Kompleksnaya obrabotka informatsii navigatsionnykh sistem letatel’nykh apparatov (Complex information processing of aircraft navigation systems), Moscow, MAI, 2002, 259 p.
  14. Musatova A.V., Sentsov A.A., Ivanov S.A. IV Mezhdunarodnyi forum «Metrologicheskoe obespechenie innovatsionnykh tekhnologii»: sbornik statei. Saint Petersburg, GUAP, 2022, pp. 97-100.
  15. Solov’eva I.A., Solov’ev D.S., Litovka Yu.V., Korobova I.L. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90475
  16. Sentsov A.A. Voprosy radioelektroniki: seriya RLT, 2011, vol. 2, no. 2, pp. 126-136.
  17. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168189. DOI: 10.34759/trd-2022-125-17
  18. Ronzhin A.L., Nguen V.V., Solenaya O.Ya. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90439
  19. Verba B.C. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya (Aviation complexes of radar patrol and guidance. Principles of construction, development problems and features of functioning), Moscow, Radiotekhnika, 2014, 525 p.
  20. Korovin A.V., Savin D.I. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171398. DOI: 10.34759/trd-2023-128-14

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход