Mask-assisted radiation equalization method in the liquid crystal matrix direct exposure system


Аuthors

Korobkov M. A.*, Zajkin V. D.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: josef_turok@bk.ru
**e-mail: dvorfin@yandex.ru

Abstract

The paper investigates the possibility of using liquid crystal displays as photomasks for transferring a conductive pattern to a photosensitive material using ultraviolet light in the manufacturing processes of printed circuit boards. The work is devoted to solving the problem of non-uniformity of ultraviolet radiation in the laboratory prototype of the direct exposure machine based on the liquid crystal matrix in the production of printed circuit boards to improve the reliability of the exposure operation.

The method of equalization of radiation by using a compensating mask is proposed. It involves overlaying an additional image with different transparency rates on the pattern displayed by the liquid crystal matrix. Transparency of the mask should be selected in such a way that after exposure in each point of the working field the shade of the photoresist color is the same and coincides with the lightest part of it.

In the work, an algorithm for creating a compensating mask by evaluating the color change of photoresist was formalized and an experimental study was carried out, which confirmed the effectiveness of the proposed method. The analysis of the histograms of the brightness of the green component of the images obtained with and without the application of the masking template showed a 51% reduction in the standard deviation. Thus, the considered method allowed us to significantly reduce the problem of non-uniformity of ultraviolet radiation distribution in the prototype of the direct exposure unit, which made it possible to increase the reliability of the technological operation of exposure using the developed unit.

Keywords:

direct exposure, printed circuit board manufacturing processes, liquid crystal matrix, reliability of manufacturing processes

References

  1. Vantsov S.V., Vasilyev F.V., Medvedev A.M., Khomutskaya O.V. Epoxy-Glass Composite Materials for Substrate Printed Circuit Boards Gigabit Electronics, Amazonia Investiga, 2019, no. 8 (22), pp. 434–442.

  2. Isaev V. Elektronika: nauka, tekhnologiya, biznes, 2020, no. 5 (196), pp. 128–137. DOI: 10.22184/1992-4178.2020.196.5.128.134

  3. Vantsov S., Medvedev A., Maung Maung Z., Khomutskaya O. Elektronika: nauka, tekhnologiya, biznes, 2016, no. 8 (158), pp. 168–188.

  4. Vantsov S.V., Medvedev A.M., Maung-Maung Z., Khomutskaya O.V. Nadezhnost’ i kachestvo slozhnykh system, 2016, no. 2 (14), pp. 37–44.

  5. Vasil’ev F.V. Fizicheskaya nadezhnost’ elektroniki (Physical reliability of electronics), Moscow, MAI, 2022, 160 p.

  6. Kumbz K.F. Platy pechatnye: spravochnik (Printed circuit boards: handbook), edited by in 2 books, Moscow, Tekhnosfera, 2011, book 1. – 1016 p.

  7. Vantsov S.V., Vasil’ev F.V., Khomutskaya O.V., Korobkov M.A. Nauchnoe priborostroenie, 2022, no. 32 (4), pp. 124–137.

  8. Nazarov A.V., Mel’nikov V.P. Trudy MAI, 2011, no. 49. URL: https://trudymai.ru/eng/published.php?ID=28237&PAGEN_2=2

  9. Bukirev A.S., Savchenko A.Yu., Yatsechko M.I. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171408. DOI: 10.34759/trd-2023-128-20

  10. Vasil’ev F.V., Vantsov S.V. Medvedev A.M., Stepanova M.A., Khomutskaya O.V. Nadezhnost’ i kachestvo slozhnykh system, 2016, no. 3 (15), pp. 85–91.

  11. Sokol’skii A.M., Sokol’skii M.L. Trudy MAI, 2016, no. 90. URL: https://trudymai.ru/eng/published.php?ID=74791

  12. Mozharov V.A., Khomutskaya O.V. Elektronika: nauka, tekhnologiya, biznes, 2017, no. 3 (163), pp. 166–176. DOI: 10.22184/1992-4178.2017.163.3.166.176

  13. Liin E.A., Korobkov M.A., Khomutskaya O.V., Vantsov S.V. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2023, no. 5, pp. 212–215.

  14. Kulikov N., Khomutskaya O., Vantsov S. Elektronika: nauka, tekhnologiya, biznes, 2018, no. 2 (173), pp. 186–191. DOI: 10.22184/1992-4178.2018.173.2.186.191

  15. Chistyakov M.G., Nazarov A.V., Morozov S.A. Trudy MAI, 2016, no. 90. URL: https://trudymai.ru/eng/published.php?ID=74853

  16. Dorozhko I.V., Musienko A.S., Sundiev D.S. Trudy MAI, 2023, no. 130. URL: https://trudymai.ru/eng/published.php?ID=174618. DOI: 10.34759/trd-2023-130-19

  17. Korobkov M.A., Zaikin V.D., Mareichev E.S., Khomutskaya O.V., Vasil’ev F.V. Nauchnoe priborostroenie, 2023, no. 33 (1), pp. 65–85.

  18. Gorelov A. Elektronika: nauka, tekhnologiya, biznes, 2022, no. 7 (218), pp. 146–151. DOI: 10.22184/1992-4178.2022.218.7.146.151

  19. Gorelov A. Application of 3D printing technologies in production of printed modules, 2021 International Conference on Electrotechnical Complexes and Systems, 2021, pp. 541–544. DOI: 10.1109/ICOECS52783.2021.9657459

  20. Orzeł B., Stecuła K. Comparison of 3D Printout Quality from FDM and MSLA Technology in Unit Production, Symmetry, 2022, vol. 14, no. 910, pp. 17. DOI:10.3390/sym14050910

  21. PengJi display. URL: https://www.szpjgd.com/product/126.html

  22. LS125 Multi-probe UV Light Meter Host. URL: https://www.linshangtech.com/product/LS125_EN.html

  23. Kazbekov A.V., Maksimov N.A. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii. 2012. № 185. C. 37–42.

  24. Maksimov N.A., Sharonov A.V. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2014, no. 207, pp. 67–75.

  25. Sharonov A.V., Maksimov N.A., Sincha D.P. Trudy MAI, 2011, no. 49. URL: https://trudymai.ru/eng/published.php?ID=28119&PAGEN_2=2


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход