The influence evaluation of taking into account the conjugate heat transfer between combustion chamber parts and between the reacting flow on the results of modeling nitrogen oxides


Аuthors

Mitrofanova Y. A.*, Zagitov R. A.**, Trusov P. V.***

Perm National Research Polytechnic University, PNRPU, 29, Komsomolsky Prospekt, Perm, 614990, Russia

*e-mail: YuAMitrofanova@yandex.ru
**e-mail: zagitoff@inbox.ru
***e-mail: tpv@matmod.pstu.ac.ru

Abstract

This article is devoted to testing the applicability of the hypothesis about the influence insignificance of the conjugate heat transfer between the reacting flow and the solid walls of the flame tube and gas collector on the calculated level of nitrogen oxide emissions. Because of this hypothesis, it is possible to significantly reduce the calculation time by reducing the number of elements of the computational mesh and simplifying the mathematical model. The object of the study is a single-phase multicomponent reacting flow of a fuel-air mixture. To describe the turbulent flow of the air-fuel mixture in the combustion chamber of a gas turbine, the Favre averaging approach of the Navier-Stokes equations was used. The SST turbulence model was used to close the resulting system. The system of equations was solved numerically using the control volume method. A combined EDM/FRC combustion model was used to find the rate of the mixture components formation. The turbulence model used in this work is hybrid, it is applicable for the parameter y plus ~ 1. To achieve this condition, three variants of computational grids were constructed with different numbers of prismatic layers at a constant growth rate of cell sizes. The results of three-dimensional calculations showed that the effect of the absence of conjugate heat transfer on the calculated level of nitrogen oxide emissions did not exceed 10% in the most heat-loaded operating mode of the gas turbine. The total heat flow through the walls of the flame tube and gas collector did not exceed 0.5% of the total amount of heat released during fuel combustion. Thus, conclusions were made about the applicability of the hypothesis under consideration. The results of the work can be important for CFD – engineers and designers working in the combustion chamber department.

Keywords:

gas fuel combustion, gas turbine engine, Reynolds-averaged Navier–Stokes equations, Menter's Shear Stress Transport, conjugate heat transfer

References

  1. Benderskii L.A., Lyubimov D.A. Aviatsionnye dvigateli, 2022, no. 2 (15), pp. 5–12. DOI: 10.54349/26586061_2022_2_05

  2. Sipatov A.M., Abramchuk T.V., Shilov K.A., Nugumanov A.D. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2016, no. 46, pp. 40–55. DOI: 10.15593/2224-9982/2016.46.02

  3. Mingalev S.V., Kazimardanov M.G. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156325. DOI: 10.34759/trd-2021-117-19

  4. Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Trudy MAI, 2012, no. 59. URL: https://trudymai.ru/eng/published.php?ID=34989

  5. Sposobin A.V. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159777. DOI: 10.34759/trd-2021-119-04

  6. Gorodnov A.O., Laptev I.V. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121008. DOI: 10.34759/trd-2021-116-02

  7. Gossman N.A., Rusakov S.V. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2018, no. 54, pp. 17-25. DOI: 10.15593/2224-9982/2018.54.02

  8. Shlikhting G. Teoriya pogranichnogo sloya (Boundary Layer Theory), Moscow, Nauka, 1974, 712 p.

  9. Khintse I.O. Turbulentnost' (Turbulence), Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1963, 680.

  10. von Karman T. Mechanische Ähnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1930, pp. 58–76.

  11. Abramovich G.N. Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1953, 736 p.

  12. Shvydkii V.S., Yaroshenko Yu.G., Gordon Ya.M. Mekhanika zhidkosti i gaza (Fluid and Gas Mechanics), Moscow, Akademkniga, 2003, 464 p.

  13. Kartashov S.V., Kozhukhov Yu.V. Omskii nauchnyi vestnik, 2021, no. 2 (176), pp. 24–30. DOI: 10.25206/1813-8225-2021-176-24-30

  14. Henkes R.A.W.M. Comparison of turbulence models for attached boundary layers relevant to aeronautics, Applied Scientific Research, 1997, vol. 57, pp. 43-65. DOI: 10.1007/BF02528763

  15. Baranov P.A., Guvernyuk S.V., Zubinin M.A., Isaev S.A., Usachev A.E. Uchenye zapiski TsAGI, 2017, vol. 48, no. 1, pp. 26–36.

  16. Spalart P.R., Allmares S.R. A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, 1992, 22 p. DOI: 10.2514/6.1992-439

  17. Wilcox D.C. Turbulence Modeling for CFD, California, 1994, 460 p.

  18. Snegirev A.Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii (High-performance Computing in Technical Physics. Numerical Modeling of Turbulent Flows), Saint Petersburg, Izd-vo Politekhnicheskogo universiteta, 2009, 143 p.

  19. Zhluktov S.V., Aksenov A.A. Komp'yuternye issledovaniya i modelirovanie, 2015, vol. 7, no. 6, pp. 1221–1239. DOI: 10.20537/2076-7633-2015-7-6-1221-1239

  20. Zhlutkov S.V., Aksenov A.A., Savitskii D.V. Komp'yuternye issledovaniya i modelirovanie, 2018, vol. 10, no. 4, pp. 461–481. DOI: 10.20537/2076-7633-2018-10-4-461-481

  21. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, London, Academic Press, 1972, 196 p.

  22. Yakhot V., Orszag S.A. Renormalization group analysis of turbulence, Journal of Scientific Computing, 1986, vol. 1, pp. 3–51. DOI: 10.1007/BF01061452

  23. Wilcox D.C. Multiscale Model for Turbulent Flows, In AIAA 24th Aerospace Meeting, 1986, pp. 15–17. DOI: 10.2514/6.1986-29

  24. Prandtl' L., Tit'ens O. Gidro- i aeromekhanika: Dvizhenie zhidkostei s treniem i tekhnicheskie prilozheniya (Fluid and aeromechanics. Movement of fluids with friction and technical applications), Moscow-Leningrad, Gostekhteorizdat, 1935, vol. 2, 311 p.

  25. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of fluid and gas), Moscow-Leningrad, Gostekhizdat, 1950, 676 p.

  26. Molchanov A.M. Matematicheskoe modelirovanie giperzvukovykh gomogennykh i geterogennykh neravnovesnykh techenii pri nalichii slozhnogo radiatsionno-konvektivnogo teploobmena (Mathematical modeling of hypersonic homogeneous and heterogeneous nonequilibrium flows in the presence of complex radiation-convective heat transfer), Moscow, Izd-vo MAI, 2017, 160 p.

  27. Fabrikant N.Ya. Aerodinamika (Aerodynamics), Moscow-Leningrad, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoi literatury, 1949, Ch. I, 624 p.

  28. Menter F.R. Zonal two-equation k-ε turbulence models for aerodynamic flows, Proc. 24th Fluid Dynamics Conference, Florida, 1993, pp. 1993-2906. DOI: 10.2514/6.1993-2906

  29. Reynolds O. Papers on mechanical and physical subjects, Cambridge, At the University Press, 1901, vol. 2, 227 p.

  30. Magnussen B.F., Hjertager B.H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, Symposium (International) on Combustion, 1976, vol. 16 (1), pp. 719–729. DOI: 10.1016/s0082-0784(77)80366-4

  31. Westbrook C.K., Dryer F.L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels inflames, Combustion Science and Technology, 1981, vol. 27, pp. 31–43. DOI: 10.1080/00102208108946970

  32. Zel'dovich Ya.B., Sadovnikov P.Ya., Frank-Kamenskii D.A. Okislenie azota pri gorenii. (Nitrogen Oxidation during Combustion), Moscow-Leningrad, Izdatel'stvo AN SSSR, 1947, 148 p.

  33. Lavoie G.A., Heywood J.B., Keck J.C. Experimental and theoretical study of nitric oxide formation in internal combustion engines, Combustion Science and Technology, 1970, vol. 1, pp. 313–326. DOI: 10.1080/00102206908952211

  34. Fenimore C.P., Jones G.W. Nitric Oxide Decomposition at 2200–2400 K, The Journal of Physical Chemistry. American Chemical Society, 1957, vol. 61, no. 5, pp. 654–657. DOI: 10.1021/j150551a034

  35. Fristrom R.M., Vestenberg A.A. Struktura plameni (Flame Structure), Moscow, Metallurgiya, 1969, 363 p.

  36. Fenimore C.P. Formation of nitric oxide in premixed hydrocarbon flames, Symposium (International) on Combustion, 1971, vol. 13, no. 1, pp. 373–380. DOI: 10.1016/S0082-0784(71)80040-1


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход