Investigation of water shock wave propagation in a piston-type pressure stabilizer


Аuthors

Basharina T. A.*, Glebov S. E.**, Akolzin I. V.***

LLC SPE "InterPolaris", Pervomayskaya str., 2, Novovoronezh, Voronezh Region, Russia, 396073

*e-mail: ta@interpolyaris.ru
**e-mail: glebovse@interpolyaris.ru, se_glebov@mail.ru
***e-mail: akolziniv@interpolyaris.ru

Abstract

In the field of hydraulics in modern mechanical engineering, the issue of wear and tear of piping systems is particularly acute, as pipelines often become unsatisfactory for operation due to internal damage caused by the constant impact of hydraulic shocks on the pipe walls. This process is widely studied, the key feature of hydrostroke is the wave-like propagation of pressure surge along the pipeline at a speed comparable to the speed of sound in the working medium. Pressure stabilizers are used to minimize the effects of hydraulic shocks in pipelines. The paper presents the results of computational experiments of hydraulic shock wave propagation in a liquid working medium in a straight pipeline and a pipeline with a piston-type pressure stabilizer installed. The analytical calculation of the main parameters of the working medium in the pressure stabilizer at the moment of hydraulic shock, such as pressure of hydraulic shock and period of oscillations of the increased pressure near the piston surfaces is given. In the course of verification of the analytical method, the relative errors of calculation of the amplitude pressure of the hydraulic shock and the velocity of propagation of the hydraulic shock in the pressure stabilizer are established, each of which is less than 5%, which corresponds to an acceptable engineering accuracy. It is determined that the use of the piston-type pressure stabilizer reduces the amplitude pressure of the hydraulic shock by more than 83%, which indicates the effectiveness of the developed design and the possibility of application in various industries.

Keywords:

hydraulic shock, pressure self-stabilizer, numerical simulation

References

  1. Zenin V.G. Gidravlicheskii udar. Raschet gidrodinamicheskikh parametrov (Hydraulic impact. Calculation of hydrodynamic parameters), Chelyabinsk, YuUrGU, 2021, 50 p.

  2. Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniyam (Handbook of hydraulic resistance), Moscow, Mashinostroenie, 1992, 662 p.

  3. Al’tshul’ A.D. Gidravlicheskie soprotivleniya (Hydraulic resistance), Moscow, Nedra, 1982, 224 p.

  4. Sinchenko E.K., Rekach F.V., Khassan N.Sh. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: inzhenernye issledovaniya, 2012, no. 1, pp. 33-36.

  5. Smirnov D.N., Zubov L.B. Gidravlicheskii udar v napornykh vodovodakh (Hydraulic impact on pressure tubes), Moscow, Stroiizdat, 1975, 125 p.

  6. Pestunov V.A., Samsonovich S.L., Chubikov V.N. Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 185-192.

  7. Myagkov K.A., Serikov D.Yu. et al. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2017, no. 6, pp. 58-64.

  8. Rekach F.V. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2007, no. 2, pp. 47-52.

  9. Tant Z.Kh. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173020. DOI: 10.34759/trd-2023-129-08

  10. Sanchugov V.I., Rekadze P.D. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167005. DOI: 10.34759/trd-2022-124-10

  11. Yudin D.A. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107913

  12. Fedorova N.N., Val’ger S.A., Danilov M.N., Zakharova Yu.V. Osnovy raboty v ANSYS 17 (Fundamentals of work in ANSYS 17), Moscow, DMK Press, 2017, 210 p.

  13. Beglyarov D.S., Grekov D.M. Modelirovanie dvizheniya zhidkosti v stabilizatore davleniya s vynosnymi kamerami (Modeling of fluid motion in a pressure stabilizer with remote chambers), Moscow, Moskovskii gosudarstvennyi universitet prirodoobustroistva, 2011, pp. 62-66.

  14. Grekov D.M. Raschet dvizheniya zhidkosti v stabilizatore davleniya (Calculation of liquid motion in a pressure stabilizer), Moscow, Prirodoobustroistvo, 2012, pp. 68-72.

  15. Shorin V.P. Ustranenie kolebanii v aviatsionnykh truboprovodakh (Elimination of vibrations in aviation pipelines), Moscow, Mashinostroenie, 1980, 156 p.

  16. Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem (Dynamics and regulation of hydro- and pneumatic systems), Moscow, Mashinostroenie, 1987, 463 p.

  17. Glikman B.F. Matematicheskie modeli pnevmogidravlicheskikh sistem (Mathematical models of pneumohydraulic systems), Moscow, Nauka, 1986, 368 p.

  18. Berdnikov V.V. Prikladnaya teoriya gidravlicheskikh tsepei (Applied theory of hydraulic chains), Mashinostroenie, 1977, 192 p.

  19. Rekach F.V., Sinichenko E.K., Khassan N.Sh. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: inzhenernye issledovaniya, 2012, no. 2, pp. 16-21.

  20. Zaryankin A.E., Padashmoganlo T. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki, 2019, vol. 21, no. 1-2. URL: https://doi.org/10.30724/1998-9903-2019-21-1-2-93-110


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход