Selection of parameters for the operation of a demonstration solar space power plant


Аuthors

Zhashuev R. M.*, Sokolova Y. V.**, Sysoev V. K.***, Yudin A. D.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: ZHashuevRM@laspace.ru
**e-mail: SokolovaUV@laspace.ru
***e-mail: SysoevVK@laspace.ru
****e-mail: IUdinAD@laspace.ru

Abstract

The article analyzes the necessary parameters of the functioning of a demonstration solar space power plant with a laser energy transmission channel. Currently, there are also physical and technical problems that complicate the implementation of space solar power plants. This is the need for large mass-dimensional parameters of solar power plants for energy collection, the need to create an energy transmission channel with high efficiency and high precision guidance and ensuring the thermal operation of solar power plants at high capacities.

The authors consider the basic parameters of such power plants. The transmitted power of laser radiation from the spacecraft is in the range of 10-100 kW. The diameter of the mirrors of the laser emitter is selected within 1÷5 meters. The choice of the orbit height, which is limited to the following options: geostationary orbit, sun-synchronous orbit with a height of 500-1000 km and elliptical orbit of the "Lightning" type

An important condition for the transfer of energy from a demonstration solar power plant to an Earth site is the size of the laser spot and its spread. Their total value should not exceed the size of the surface of the earth's phototransformers, the accepted diameter of 100 meters. Detailed calculations were carried out for a mirror diameter of 2 meters.

When determining the design appearance of a demonstration space power plant, in terms of geometric dimensions, the area of solar panels of such a power plant was estimated, depending on the estimated power and efficiency of the photo converters.

Currently, it is very difficult to estimate the design parameters of such a spacecraft, especially the mass-dimensional ones, but as can be seen from previous estimates, they will be very significant. Modern space technology makes it possible to estimate such a demonstration space power plant in the range from 5 to 8 tons.

Keywords:

demonstration solar space power plant, solar energy, spacecraft, energy transmission

References

  1. Glaser R.E. Power from the Sun: it's Future, Science, 1968, vol. 62, pr. 857-886. DOI: 10.1126/SCIENCE.162.3856.857

  2. Vanke V.A., Leskov L.V., Luk'yanov A.V. Kosmicheskie energosistemy (Space power systems), Moscow, Mashinostroenie, 1997, 140 p.

  3. Nagamato M., Sakasi S., Naruo I., Vanke V.A. Uspekhi fizicheskikh nauk, 1994, vol. 164, no. 6, pp. 631-641.

  4. Sysoev V.K., Pichkhadze K.M., Greshilov P.A., Verlan A.A. Kosmicheskie solnechnye elektrostantsii - puti razvitiya (Space solar power plants - ways of development), Moscow, MAI-Print, 2012, 185 p.

  5. SOLARIS activity plan 2023-2025. Summary. 2022. Reference: ESA-TECSF-PL-2022-004006. URL: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/SOLARIS/SOLARIS_activity_plan

  6. Sysoev V.K., Yudin A.D. Polet, 2022, no. 8-9, pp. 90-98.

  7. Bogushevskaya V.A., Zayats O.V., Maslyakov Ya.N. et al. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29047

  8. Dmitriev A.O. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170341. DOI: 10.34759/trd-2022-127-11

  9. Aslanova A.B. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164287. DOI: 10.34759/trd-2022-122-21

  10. Cougnet C., Gerber B., Steinsiek F., Laine R., Perren M. The 10 kW satellite: a first operational Step for space based solar power, 61nd IAC, 2010, № IAC-10/C3/4/2, pp.1-6.

  11. James Webb space telescope. Goddard space flight center. URL: https://jwst.nasa.gov/content/webbLaunch/whereIsWebb.html

  12. Barkova M.E. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121078. DOI: 10.34759/trd-2021-116-09

  13. Sysoev V.K., Barabanov A.A., Dmitriev A.O., Nesterin I.M., Pichkhadze K.M., Suimenbaev B.T. Trudy MAI, 2014, no. 77. URL: https://trudymai.ru/eng/published.php?ID=52959

  14. Sysoev V.K., Belyaev B.B., Zhiryakov A.V., Nesterin I.M., Suimenbaev B.T., Telepnev P.P. Vestnik NPO im. S.A. Lavochkina, 2016, no. 2, pp. 91-99.

  15. Yermoldina G.T., Suimenbayev B.T., Sysoev V.K., Suimenbayeva Z.B. Features of space sola r power station control system, Acta Astronauticam, 2019, vol. 158, pp. 111-120. DOI: 10.1016/J.ACTAASTRO.2018.04.001

  16. Okhotsimskii D.E. Sikharulidze E.G. Osnovy mekhaniki kosmicheskogo poleta. (Fundamentals of space flight mechanics), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1990, 448 p.

  17. Andreev V.M. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya, 2020, vol. 21, no. 4, pp. 271–280.

  18. Vasil'ev E.N., Derevyanko V.A., Chebotarev V.E. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2016, vol. 17, no. 4, pp. 930–935.

  19. Shurigina V. Elektronika: Nauka, Tekhnologiya, Biznes, 2003, no. 3, pp. 20–24.

  20. Belyavskii A.E., Sorokin A.E., Strogonova L.B., Shangin I.A. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100615


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход