Identification of the single ply properties in fiber-metall lamintes
Аuthors
Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi, Viet Nam
e-mail: quyetthang.mai@gmail.com
Abstract
The paper presents the results of identifying the elastic characteristics and loss coefficients of monolayers of a metal-polymer composite consisting of layers of aluminum alloy and fiberglass (aluminum fiberglass). Identification was carried out on the basis of tests for damped vibrations of cantilever-mounted samples. For dynamic testing, the samples were rigidly fixed with a metallic clamp at one end, leaving the other end free. Subsequently, an impact was applied to the free end using a metallic striker, or an initial deflection of the beam’s end from the equilibrium position was set. Displacements in the free end zone of the samples were measured by a laser displacement sensor and transferred to a program that allowed for the registration of displacement/time curves, saving them in tabular and graphical formats. The length of the free end of the beam, denoted as L (excluding the clamps), was determined to achieve a specified natural frequency of beam oscillations ω0 (20, 30 or 60 Hz). Specific values of lengths were used for beams with different laying schemes. The maximum deflection of the beam was A0 = 0.08L. The tests measured the natural vibration frequencies and loss coefficients of composite samples with various reinforcement schemes. Identification is performed based on solving the inverse problem using the classical theory of multilayer beams and the complex module method. Three approaches to solving the inverse problem are considered, in which a separate identification procedure is carried out for the elastic characteristics of monolayers based on the results of static or dynamic tests, or simultaneous identification of elastic and damping parameters is carried out based on dynamic test data.
Keywords:
glass laminate aluminum reinforced epoxy, GLARE, identification, monolayer, dynamic properties, natural frequency, loss factorReferences
-
Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Aviatsionnye materialy i tekhnologii, 2016, no. 3 (42), pp. 3-8. DOI: 10.18577/2071-9140-2016-0-3-3-8
-
Kablov E.N. Aviatsionnye materialy i tekhnologii, 2015, no. 1 (34), pp. 3-33. DOI: 10.18577/2071-9140-2015-0-1-3-33
- Kablov E.N., Antipov V.V., Senatorova O.T., Lukina N.F. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya mashinostroenie, 2011, no. 52, pp. 174-183.
-
Antipov V.V. et al. Aviatsionnye materialy i tekhnologii, 2020, no. 1, pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53
-
Antipov V.V., Serebrennikova N.Yu., Senatorova O.G., Morozova L.V., Lukina N.F., Nefedova Yu.N. Vestnik mashinostroeniya, 2016, no. 12, pp. 45-49.
-
Wu Guocai, Yang J M. The mechanical behaviour of GLARE laminates of aircraft structures, Journal of the Minerals, Metals, Materials Society, 2005, vol. 57, issue 1, pp. 72-79. DOI: 10.1007/s11837-005-0067-4
-
Shestov V.V., Antipov V.V., Serebrennikova N.Yu., Nefedova Yu.N. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 119–123.
-
Vasil’ev V.V., Protasov V.D., Bolotin V.V. et al. Kompoztsionnye materialy (Composite materials), Moscow, Mashinostroenie, 1990, 512 p.
-
Ganapathi M., Patel B.P., Touratier M. Inflience of amplitude of vibrations on loss factors of laminated composite beams and plates, Journal of Sound and Vibration, 1999, no. 219 (4), pp. 730-738.
-
Hui Li, Yi Niu, Chao Mu, and Bangchun Wen. Identification of Loss Factor of Fiber- Reinforced Composite Based on Complex Modulus Method, Shock and Vibration, 2017. DOI: 10.3390/ma15165559
-
Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structures, Elsevier, 2018, 864 p.
-
Robert M. Jones. Mechanics of Composite Materials, CRC Press, 1998, 538 p.
-
Tran Quyet Thang, Rabinskiy L.N., Yury Solyaev, Fedor Nasonov. Inverse analysis for the amplitude-dependent damping properties of epoxy/glass fiber laminates, Composites: Mechanics, Computations, Applications: An International Journal, 2024, no. 15 (2). DOI: 10.1615/CompMechComputApplIntJ.2023049468
-
ASTM D3039/D3039M-08. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, 2014. URL: https://www.astm.org/d3039_d3039m-08.html
- Fu Z.F., He J. Modal analysis, Elsevier, 2001, 304 p.
-
Gere J.M., Timoshenko S.P. Mechanics of Materials, Boston, PWS Publishing Company, 1997, 912 p.
-
Rabinskii L.N., Solyaev Yu.O., Chan K.T., Nguen T.L. Materialy XXIX mezhdunarodnogo simpoziuma “Dinamicheskie i tekhnologicheskie problemy mekhanika konstruktsii i oploshnykh sred” imeni A.G. Gorshkova, Moscow, OOO TRP, 2023, pp. 180.
-
Jones R.M. Mechanics of composite materials, CRC press, 2018, 538 p.
-
Chandra R., Singh S.P., Gupta K. Micromechanical damping models for fiber- reinforced composites: A comparative study, Composites – Part A: Applied Science and Manufacturing, 2002, no. 33 (6), pp. 787-796. URL: https://doi.org/10.1016/S1359-835X(02)00019-2
-
Prokudin O.A., Rabinskii L.N., Chan Kuet Tkhang. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161419. DOI: 10.34759/trd-2021-120-06
-
Polyakov P.O., Shesterkin P.S. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168998. DOI: 10.34759/trd-2022-126-12
-
Kriven’ G.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170333. DOI: 10.34759/trd-2022-127-05
-
Rabinskii L.N., Babaitsev A.V., Shesterkin P.S. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=166911. DOI: 10.34759/trd-2022-127-05
Download