Investigation of the universal optimal method of finite-time and spectral-finite processing of navigation signals of aircraft instruments in conditions of complete and incomplete a priori certainty


Аuthors

Fedorinov A. Y.*, Ivanov Y. P.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

*e-mail: fedorinov_asperant_accaunt@mail.ru

Abstract

In the theory of measuring information processing, new approaches have been developed to finite-time and spectral-finite methods of signal processing (filtering). The signal filtering procedure is the most important task in the field of information processing. The article will explore the key features of these algorithms. These approaches are based on the orthogonal projection theorem and are optimal by the criterion of the minimum amount of error variance. The approaches are capable of producing linear recurrent estimates of non-Markov signals with correlated and uncorrelated interference. At the moment, the engineering community is making extensive use of Kalman filtering. The proposed algorithms will have an advantage over the Kalman filter. The estimation algorithms obtained on the basis of this approach coincide in accuracy with Kalman filtering and are applicable to a wide class of signal and interference models. In this paper, recurrent sums of error variances of current and interpolated estimates, optimal by the criterion of minimum, linear algorithms for filtering signals under conditions of various a priori certainty against the background of correlated and white noise, with memory provision for the measurements obtained from the beginning of work, will be investigated. The optimal estimation algorithms obtained on the basis of the properties of the orthogonal projection theorem are universal for a wide class of signal and interference models, independent of the presence of the markovity property of the signal and the correlation of measurement interference, coinciding in accuracy with Kalman filtering, simpler in their implementation, due to the adaptability property, they have increased noise immunity and robustness, at the same time With optimal filtering, optimal signal interpolation is provided The simulation was carried out in the Mathcad environment. Currently, the following algorithms have been implemented and studied: finite-time and spectral-finite; with/without feedback; adaptive / non-adaptive; with or without known interference, and their combinations.

Keywords:

finite-time processing, spectral-finite estimation of navigation signals, optimality, versatility of application, adaptive filtering, orthogonal projection theorem, Duba theorem

References

  1. Tyapkin P.S. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173029. DOI: 10.34759/trd-2023-129-17

  2. Seidzh E., Mels Dzh.. Teoriya otsenivaniya i ee primenenie v svyazi i upravleniya (Theory of evaluation and its application in communication and management), Moscow, Svyaz', 1976, 495 p.

  3. Medich Dzh. Statisticheski optimal'nye lineinye otsenki i upravlenie (Statistically optimal linear estimates and control), Moscow, Energiya, 1973, 440 p.

  4. Shakhtarin B.I. Fil'try Vinera i Kalmana (Wiener and Kalman filters), Moscow, Gelios ARV, 2008, 408 p.

  5. Ovakimyan D.N., Zelenskii V.A., Kapalin M.V., Ereskin I.S. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176849

  6. Detkov A.N. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169002. DOI: 10.34759/trd-2022-126-16

  7. Ivanov Yu.P., Sinyakov A.N., Filatov I.V. Kompleksirovanie informatsionno-izmeritel'nykh ustroistv letatel'nykh apparatov (Integration of information and measuring devices of aircraft), Leningrad, Mashinostroenie, 1984, 208 p.

  8. Ivanov Yu.P., Nikitin V.G. Informatsionno-statisticheskaya teoriya izmerenii. Metody optimal'nogo sinteza informatsionno-izmeritel'nykh, kriterii optimizatsii i svoistva otsenok (Information and statistical theory of measurements. Methods of optimal synthesis of information and measurement, optimization criteria and evaluation properties), Saint Petersburg, GUAP, 2011, 102 p.

  9. Pugachev V.S. Teoriya sluchainykh funktsii (Theory of random functions), Moscow, Fizmatgiz, 1962, 882 p.

  10. Ivanov Yu.P. Pribory i Sistemy. Upravlenie, Kontrol', Diagnostika, 2018, no. 5, pp. 23-28.

  11. Frenks L. Teoriya signalov (Signal theory), Moscow, Sovetskoe radio, 1974, 344 p.

  12. Bukhalev V.A., Boldinov V.A. Trudy MAI, 2017, no. 97. URL: http://trudymai.ru/eng/published.php?ID=87283

  13. Ivanov Yu.P. Priborostroenie, 2003, no. 3, pp. 3-9.

  14. Tang. Pham Van, Thang Nguyen Van, Duc Anh Nguyen, Trinh Chu Duc. 15 – State Extended Kalman Filter Design for INS / GPS Navigation System, Journal of Automation and Control Engineering, January 2015, vol. 3, no. 2, pp. 109-114. DOI: 10.12720/joace.3.2.109-11

  15. Ivanov Yu.P. V Mezhdunarodnyi forum “Metrologicheskoe obespechenie innovatsionnykh tekhnologii”: sbornik statei. Saint Petersburg, GUAP, 2023, pp. 62-63.

  16. Vishal Awasthi, Krishna Raj. A Comparison of Kalman Filter and Extended Kalman Filter in State Estimation, International Journal of Electronics Engineering, 2011, vol. 3, no. 1, pp. 67-71.

  17. Ivanov Yu.P., Krasnenkov N.S., Semenov D.N. Chetvertaya Mezhdunarodnaya nauchnaya konferentsiya “Aerokosmicheskoe priborostroenie i ekspluatatsionnye tekhnologii”: sbornik trudov. Saint-Petersburg, GUAP, 2023, pp. 30-35. DOI: 10.31799/978-5-8088-1819-4-2023-4-1-30-35

  18. Glushkov A.N., Moiseev S.N., Ispulov A.A., Filippov A.V., Nikolaev S.V. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170346. DOI: 10.34759/trd-2022-127-16

  19. Gorbunov S.A., Nenashev V.A., Mazhitov M.V., Khadur A.A. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170348. DOI: 10.34759/trd-2022-127-18

  20. Andria Gregorio, Mario Savino, Amerigo Trotta. Windows and interpolation algorithms to improve electrical measurement accuracy, IEEE Transactions on Instrumentation and Measurement, 1989, vol. 38.4, pp. 856-863. DOI: 10.1109/19.31004

  21. Ivanov Yu.P., Semenov D.N., Krasnenkov N.S., Sorokina A.V. Chetvertaya Mezhdunarodnaya nauchnaya konferentsiya “Aerokosmicheskoe priborostroenie i ekspluatatsionnye tekhnologii”: sbornik trudov. Saint-Petersburg, GUAP, 2023, pp. 36-41. DOI: 10.31799/978-5-8088-1819-4-2023-4-1-36-41


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход