Modeling the evolution of solitary strain waves in two coaxial shells of incompressible material with combined nonlinearity, containing a viscous fluid between them and in the inner shell


Аuthors

Popova E. V.

Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia

e-mail: elizaveta.popova.97@bk.ru

Abstract

The article deals with the hydroelasticity problem formulation for the two coaxial cylindrical shells of the Kirchhoff-Love type, containing a viscous incompressible fluid in the annular gap and in the inner shell. The material of the shells is considered as incompressible and of a nonlinear law of stress-strain relationship and strain intensity. The shell dynamics equations are obtained for the case when this law has a tough combined nonlinearity in the form of a function with a fractional exponent and a quadratic function. The viscous fluid dynamics are being considered in the framework of the hydrodynamic theory of lubrication, i.e., the fluid motion is assumed to be creeping. The asymptotic analysis of the formulated problem of hydroelasticity is performed applying the two-scale perturbation method. As the result, a system of two evolution equations for modeling the onlinear longitudinal strain waves propagation in shells is obtained. It demonstrated that in the case of incompressible shell material, the presence of viscous fluid in the inner shell does not affect the wave process. The equations of the system represent the Korteweg-de Vries-Schamel equations. The exact partial solution for the obtained system of evolution equations in the form of a solitary wave with an arbitrary wave number is found for the case when that wave propagates in each of the shells. The new difference scheme for the nonlinear system of two generalized Korteweg-de Vries-Schamel equations based on the application of the Gröbner basis technique is derived for numerical simulations. Computational experiments have been perforomed to study the evolution of solitary longitudinal strain waves excited in shells. Numerical modeling has revealed that solitary nonlinear strain waves in the shells are supersonic solitons, as well as the presence of the energy transfer from one shell to another due to the fluid viscosity between them.

Keywords:

mathematical modeling, nonlinear strain waves, coaxial shells, viscous fluid, incompressible material, combined nonlinearity, computational experiment

References

  1. Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuous media), Moscow, Fizmatlit, 2004. 472 p.

  2. Basharina T.A., Glebov S.E., Akol'zin I.V. Trudy MAI, 2023, no. 133. URL: https://trudymai.ru/eng/published.php?ID=177661

  3. Gorshkov A.G., Morozov V.I., Ponomarev A.T., Shklyarchuk F.N. Aerogidrouprugost' konstruktsii (Aerohydroelasticity of Structures), Moscow, Fizmatlit, 2000, 592 p.

  4. Gromeka I.S. O skorosti rasprostraneniya volnoobraznogo dvizheniya zhidkostei v uprugikh trubkakh (On the velocity of wave-like motion of fluids in elastic tubes), Moscow, Izd-vo AN SSSR, 1952, pp. 172-183.

  5. Womersley J.R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube. I. The linear approximation for long waves, Philosophical Magazine, 1955, vol. 46, p. 199-221. URL: http://dx.doi.org/10.1080/14786440208520564

  6. Païdoussis M.P. Fluid-Structure Interactions. Volume 2: Slender Structures and Axial Flow. Second Edition. London, Elsevier Academic Press, 2016, 942 p. URL: https://doi.org/10.1016/C2011-0-08058-4

  7. Amabili M. Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. Cambridge, Cambridge University Press, 2018, 586 p. URL: http://doi.org/10.1017/9781316422892

  8. Païdoussis M.P. Dynamics of cylindrical structures in axial flow: A review, Journal of Fluids and Structures, 2021, vol. 107. URL: http://doi.org/10.1016/j.jfluidstructs.2021.103374

  9. Koren'kov A.N. Zhurnal tekhnicheskoi fiziki, 2000, vol. 70, no. 6, pp. 122-125.

  10. Koren'kov A.N. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 2019, vol. 6, no. 1, pp. 131-143. URL: https://doi.org/10.21638/11701/spbu01.2019.110

  11. Ivanov S.V., Mogilevich L.I., Popov V.S. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104003

  12. Bykova T.V., Evdokimova E.V., Mogilevich L.I., Popov V.S. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115113. DOI: 10.34759/trd-2020-111-3

  13. Mogilevich L.I., Blinkov Yu.A., Ivanov S.V. Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 2020, vol. 28, no. 4, pp. 435-454. URL: https://doi.org/10.18500/0869-6632-2020-28-4-435-454

  14. Mogilevich L.I., Popova E.V. Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity, Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, no. 3, pp. 365-376. DOI: 10.18500/0869-6632-003040

  15. Bykova T.V., Mogilevich L.I., Evdokimova E.V., Popova E.V., Popova M.V. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173017. DOI: 10.34759/trd-2023-129-05

  16. Blinkov Yu. A., Mogilevich L.I., Popov V.S., Popova E.V. Vychislitel'naya mekhanika sploshnykh sred, 2023, vol. 16(4), pp. 430-444. URL: https://doi.org/10.7242/1999-6691/2023.16.4.36

  17. Vol'mir A.S. Nelineinaya dinamika plastinok i obolochek (Nonlinear dynamics of plates and shells: studies. Manual for undergraduate and graduate), Moscow, Nauka, 1972, 432 p.

  18. Lukash P.A. Osnovy nelineinoi stroitel'noi mekhaniki (Fundamentals of Nonlinear Structural Mechanics), Moscow, Stroiizdat, 1978, 204 p.

  19. Zemlyanukhin A.I., Andrianov I.V., Bochkarev A.V., Mogilevich L.I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells, Nonlinear Dynamics, 2019, vol. 98(1), pp. 185-194. URL: https://doi.org/10.1007/s11071-019-05181-5

  20. Zemlyanukhin A.I., Bochkarev A.V., Andrianov I.V., Erofeev V.I. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells, Journal of Sound and Vibration, 2021, vol. 491, 115752. URL: https://doi.org/10.1016/j.jsv.2020.115752

  21. Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues. New York, Springer-Verlag, 1993, 568 p.

  22. Il'yushin A.A. Mekhanika sploshnoi sredy (Continuum mechanics), Moscow, Izd-vo MGU, 1990, 310 p.

  23. Kauderer H. Nichtlineare Mechanik, Berlin, Springer, 1958, 684 p.

  24. Vallander S.V. Lektsii po gidroaeromekhanike (Lectures on Hydroaeromechanics), Leningrad, LGU, 1978, 296 p.

  25. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of Liquids and Gases), Moscow, Drofa, 2003, 840 p.

  26. Nayfeh A.H. Perturbation methods. New York, Wiley, 1973, 425 p.

  27. Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. Gröbner bases and generation of difference schemes for partial differential equations, Symmetry, Integrability and Geometry: Methods and Applications, 2006, vol. 2. URL: https://doi.org/10.3842/SIGMA.2006.051

  28. Blinkov Y.A., Gerdt V.P., Marinov K.B. Discretization of quasilinear evolution equations by computer algebra methods, Programming and Computer Software, 2017, vol. 43, no. 2, pp. 84-89. URL: https://doi.org/10.1134/S0361768817020049


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход