The method for assessing the stability of radio control of dynamic object in a complex interference environment


Аuthors

Patrakov S. S.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

The article considers the process of information radio exchange in the aviation complex under conditions of a complex interference situation, when the input of the receiving unit receives not only a legitimate signal but the signals with the parameters adequate to those of a legitimate signal except the parameters carrying valuable information. The purpose of the research, which results are presents in the article, consists in the noise immunity increasing of the data transmission radio system of aviation complexes in a complex interference environment. Selection of the Doppler frequency of the signal as an additional sign of interference is substantiated. The interference detection probability was selected as the noise immunity indicator. The interference detecting condition is defined. The author developed a model of informational exchange in complexes under interference conditions with account for the Doppler shift of the carrier frequency The model is complex and includes an analytical model, on which basis the simulation model was developed. The presented simulation results indicate the possibility for interference detecting with varying degrees of accuracy based on the statistical approach. To implement the proposed approach, the algorithm for the interference impact detecting on the dynamic object is developed, based on tracking the Doppler frequency of the received signal at all points of the flight path. The existing methods of non-cryptographic protection of information transmitted throug the radio channel of modern aviation complex from interference ensure a probability of interference detecting not greater than 0,75. To increase the interference detecting probability, the author proposed to evaluate the information exchange stability based on tracking the Doppler frequency of the signal and interference, of which implementation allows achieving a noise immunity index of a least 0,99.

Keywords:

dynamic object, radio control, interferences, interferences detection algoritm, doppler frequency

References

  1. Makarenko S.I. Sistemy upravleniya, svyazi i bezopasnosti, 2020, no. 2. pp. 101-175.
  2. Byankin A.A., Patrakov S.S. 73 Vserossiiskaya nauchno-tekhnicheskaya konferentsiya, posvyashchennoi Dnyu radio: sbornik trudov. Saint-Peterburg, LETI im. V.I. Ul'yanova (Lenina), 2018, pp. 186-187.
  3. Veretyagin A.A. Teoriya obrabotki signalov i avtomaticheskogo upravleniya v RES (The theory of signal processing and automatic control in radiolectronic systems), Saint Peterspurg, MO RF, 1992, 718 p.
  4. Kupriyashkin A.G. Osnovy modelirovaniya system (Systems modeling basics), Noril'sk, NII, 2015, 135 p.
  5. Guseinov G.A., Zul'fugarly P.R., Abdurakhmanova I.G. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169012. DOI: 10.34759/trd-2022-126-26
  6. Anan'ev A.V., Ivannikov K.S., Filatov S.V. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168188. DOI: 10.34759/trd-2022-125-16
  7. Ermakov P.G., Gogolev A.A. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167100. DOI: 10.34759/trd-2022-124-17
  8. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  9. Yan Chen, Dan Li, Yanhai Li, Xiaoyuan Ma. Use Moving Average Filter to Reduce Noises in Wearable PPG During Continuous Monitoring, EAI International Conference on Wearables in Healthcare, Budapest, Hungary, vol. eHealth 2016, LNICST 181, pp. 193–203. DOI: 10.1007/978-3-319-49655-9_26
  10. Patrakov S.S., Loskutov A.I., Shestopalova O.L. Informatsionno-upravlyayushchie sistemym, 2014, no. 2 (69), pp. 18-24.
  11. Zheng Le, Lops Marco et al. Radar and Communication Co-existence: an Overview. URL: https://arxiv.org/pdf/1902.08676.pdf
  12. Yao Y., Wu L. Cognitive Waveform Design for Radar-Communication Transceiver Networks, Journal of advanced transportation, 2018. DOI: 10.1155/2018/4182927
  13. Liu F., Zhou L., Li Masouros et al. Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design, IEEE Transactions on Signal Processing, 2018, vol. 66 (16), pp. 4264-4279. DOI: 10.1109/TSP.2018.2847648
  14. Dou Z., Zhong X., Zhang W. Radar-Communication Integration Based on MSK-LFM Spread Spectrum Signal, International Journal of Communications, Network and System Sciences, 2017, vol. 10, pp. 108-117. DOI: 10.4236/ijcns.2017.108B012
  15. Patrakov S.S., Loskutov A.I., Fomin A.V. VIII Molodezhnaya nauchno-tekhnicheskaya konferentsiya «Innovatsionnyi arsenal molodezhi» v AO «KB Arsenal». sbornik tezisov dokladov. Saint-Petersburg, BGTU Voenmekh im. D.F. Ustinova, 2017, pp. 144-153.
  16. Alieva A.D., Guseinova M.V., Gumbatov D.A. Trudy MAI, 2023, no. 133. URL: https://trudymai.ru/eng/published.php?ID=177667
  17. Patrakov S.S., Zolotarev E.R., Fomin A.V. VIII Molodezhnaya nauchno-tekhnicheskaya konferentsiya «Innovatsionnyi arsenal molodezhi» v AO «KB Arsenal»: sbornik tezisov dokladov. Saint-Petersburg, BGTU Voenmekh im. D.F. Ustinova, 2018, pp. 181-182.
  18. Perez D., Maza I., Caballero D., Scarlatti D., Casado E., Ollero A. A ground control station for a multi-UAV surveillance system, Journal of intelligent robotic systems, 2013, vol. 69 (1), pp. 119-130. DOI: 10.1007/s10846-012-9759-5
  19. Perera A.G., Al-Naji A., Law Y.W., Chahl J. Human detection and motion analysis from a quadrotor UAV, IOP conference series: materials science and engineering, 2018, vol. 405 (1). DOI: 10.1088/1757-899X/405/1/012003
  20. Pushkarev O. Elektronnye komponenty, 2012, no. 2, pp. 42-48.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход