Approximate synthesis of optimal control of trajectory pencils of continuous deterministic systems with incomplete feedback


Аuthors

Panteleev A. *, Karane M. S.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: avpanteleev@inbox.ru
**e-mail: mmkarane@mail.ru

Abstract

The problem of finding an approximate optimal control for deterministic control systems with incomplete feedback on measured variables described by ordinary differential equations is considered. The initial conditions are given in the form of a set of initial states, so the problem of controlling a pencil of trajectories generated by this set and the control law used is considered. To describe the set of initial states, as well as the position of this pencil over time, smooth finite functions are used, the values of which characterize the density of traces of trajectories inside the pencil.
This task is relevant because it allows you to cover a wider class of applied problems. The uncertainty of setting the initial state of the system or the lack of complete information about the state of the system is often found in practice, for example, due to a malfunction of measuring devices or an error in the measurements obtained.
Sufficient conditions for е-optimality are formulated and proven, expressions are obtained for finding an a priori estimate of the proximity of the desired control to the optimal one, and a method for parameterizing the problem of satisfying sufficient conditions based on the spectral representation of unknown basis functions is proposed. A step-by-step algorithm for searching for approximate optimal control using sufficient conditions and multi-agent  optimization algorithms is presented. Based on the proposed approach, software to analyze the effectiveness of this approach has been developed. Two model examples are solved, in which estimates of the proximity of the control laws to the optimal solution are obtained and the results of an analysis of the behavior of the corresponding pencils of trajectories are presented.

Keywords:

optimal control, trajectory pencils, sufficient optimality conditions, multi-agent optimization algorithms

References

  1. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and supervision under conditions of uncertainty), Moscow, Nauka, 1977, 392 p.
  2. Chernous'ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov (Estimation of the phase state of dynamical systems. The ellipsoid method), Moscow, Nauka, 1988, 320 p.
  3. Ovsyannikov D.A. Modelirovanie i optimizatsiya dinamiki puchkov zaryazhennykh chastits (Modeling and optimization of dynamics of charged particle beams), Saint-Petersburg, Izd-vo LGU, 1990, 312 p.
  4. Ovsyannikov D.A. Matematicheskie metody upravleniya puchkami (Mathematical methods of beam control), Leningrad, Izd-vo LGU, 1980, 228 p.
  5. Brockett R.W. Optimal Sontrol of the Liouville Equation, AMS/ IPStudies in Advanced Mathematics, 2007, vol. 39, pp. 23–35.
  6. Henrion D., Korda M. Convex Computation of the Region of Attraction of Polynomial Control Systems, European Control Conference (ECC), 2013, pp. 676–681.
  7. Halder A., Bhattacharya R. Dispersion Analysis in Hypersonic Flight During Planetary Entry Using Stochastic Liouville Equation, Journal Guidance, Control, and Dynamics, 2011, vol. 34, no. 2, pp. 459–474. DOI: 10.2514/1.51196
  8. Dutta P., Bhattachariya R. Hypersonic state estimation using Frobenius-Perron operator, Journal Guidance, Control, and Dynamics, 2011, vol. 34, no. 2, pp. 325–344. DOI: 10.2514/1.52184
  9. Kubo R. Stochastic Liouville Equations, Journal of Mathematical Physics, 1963, vol.4, no. 2, pp. 174–184. DOI: 10.1063/1.1703941
  10. Risken H. The Fokker–Planck Equation: Methods of Solution and Applications. NY: Springer, 1996, 472 p.
  11. Panteleev A.V., Semenov V.V. Sintez optimal'nykh sistem upravleniya pri nepolnoi informatsii (Synthesis of optimal control systems with incomplete information), Moscow, Izd-vo MAI, 1992, 192 p.
  12. Panteleev A.V. Variatsionnoe ischislenie v primerakh i zadachakh (Calculus of variations in examples and problems), Moscow, Vysshaya shkola, 2006, 272 p.
  13. Bortakovskii A.S. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2016, no. 1, pp. 5–26.
  14. Bortakovskii A.S. Avtomatika i telemekhanika, 2020, no. 11, pp. 46–71.
  15. Bortakovskii A.S., Uryupin I.V. Trudy MAI, 2020, no. 113. URL: https://trudymai.ru/eng/published.php?ID=118185. DOI: 10.34759/trd-2020-113-17
  16. Nemychenkov G.I. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/ eng/published.php?ID=102203
  17. Panteleev A.V., Pis'mennaya V.A. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2018, no. 1, pp. 27–38.
  18. Panteleev A.V. Metaevristicheskie algoritmy optimizatsii zakonov upravleniya dinamicheskimi sistemami (Metaheuristic algorithms for optimizing the laws of control of dynamic systems), Moscow, Faktorial, 2020, 564 p.
  19. Karane M.M.S., Panteleev A.V. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2022, no. 5, pp. 50–75.
  20. Panteleev A.V., Karane M.M.S. Mul'tiagentnye i bioinspirirovannye metody optimizatsii tekhnicheskikh sistem (Multi-agent and bioinspired methods of optimization of technical systems), Moscow, Dobroe slovo i Ko, 2024, 336 p.
  21. Goncharova V.I. Trudy MAI, 2024, no. 134. URL: https://trudymai.ru/eng/published.php?ID=178476
  22. Panteleev A.V., Belyakov I.A. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164301. DOI: 10.34759/trd-2022-122-24
  23. Zaitseva N.I., Pogarskaya T.A. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167106. DOI: 10.34759/trd-2022-124-23
  24. Krotov V.F., Gurman V.I. Metody i zadachi optimal'nogo upravleniya (Methods and problems of optimal control), Moscow, Nauka, 1973, 448 p.
  25. Gurman V.I. Printsip rasshireniya v zadachakh upravleniya (The principle of expansion in control tasks), Moscow, Nauka, 1985, 288 p.
  26. Khrustalev M.M. Doklady AN SSSR, 1978, vol. 242, no. 5, pp. 1023–1026.
  27. Panteleev A.V., Rybakov K.A. Avtomatika i telemekhanika, 2011, no. 2, pp. 183–194.
  28. Rybakov K.A. Spektral'nyi metod modelirovaniya nepreryvnykh stokhasticheskikh sistem (Spectral method of modeling continuous stochastic systems), Moscow, Izd-vo MAI, 2021, 216 p.
  29. Rybakov K.A. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2020, vol. 24, no. 1 (87), pp. 93–102.
  30. Chugai K., Kosachev I., Rybakov K. Approximate MMSE and MAP estimation using continuous-time particle filter, AIP Conference Proceedings, 2019, vol. 2181. DOI: 10.1063/1.5135661


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход