Investigation of direction finding methods for Ground-based radioelectronic control systems for navigation spacecraft


Аuthors

Slavyansky A. O.*, Bezkaravainy V. A.**, Latyshev A. E.***, Mironov P. N.****, Nelina M. V.*****, Skrynskij V. R.

MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 78, Vernadsky prospect, Moscow, 119454, Russia

*e-mail: andrey.slavyanskiy@gmail.com
**e-mail: uglanoff.kn@yandex.ru
***e-mail: a.e.latishev@yandex.ru
****e-mail: p.n.mironov85@mail.ru
*****e-mail: maria.nelina@yandex.ru

Abstract

In this study, we consider a spatial model for determining the position of a direction finding object by means of two-coordinate phase direction finders of a wide sector of simultaneous space survey. As a scanning device, flat antenna arrays are used in the work, providing high speed of operation, allowing the signal to be captured in time and sent for processing by the system. Antenna arrays consist of a set of elements forming many different phasometric bases, which is their direct advantage. The main algorithms for the study were chosen "summation of cosines", "refinement method" and the method of statistical optimization of the algorithm for estimating the angle of arrival of radio waves, which, combined with its simplicity, allows determining the coordinates of an object in the observation area with sufficient accuracy. The paper also considers the basic algorithms for estimating one angular coordinate in the plane, and estimating two angular coordinates in three-dimensional space. A comparative analysis of the accuracy characteristics of estimates of the angular coordinates of the radiation source obtained by the method of "summation of cosines", the maximum likelihood method and some combined methods that are proposed to solve the problem of ambiguity is presented. Among other things, the text analyzes the dependence of the bias and the RMS error of measuring the phase difference, depending on the signal-to-noise ratio.

Keywords:

phase direction finder, antenna system, estimation algorithm, phase difference

References

  1. Klishin A.V., Klestova M.V., Tsarik D.V. Uspekhi sovremennoi radioelektroniki, 2017, no. 10, pp. 43-48.
  2. Daniel Guerin, Shane Jackson, Jonathan Kelly. Passive Direction Finding, Worcester Polytechnic Institute, 2012, 94 p.
  3. Suchkov A.V. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=66408
  4. Chistyakov V.A. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119921. DOI: 10.34759/trd-2020-115-07
  5. Klochko V.K. Patent RU 2292060 C1, 20.01.2007.
  6. Chistyakov V.A. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111394. DOI: 10.34759/trd-2019-109-15
  7. Kondrat'eva S.G. Trudy MAI, 2012 no. 52. URL: http://trudymai.ru/eng/published.php?ID=29560
  8. Zinin E.D., Mel'nikov G.A., Miloserdov A.S. Trudy MAI, 2014, no. 73. URL: http://trudymai.ru/eng/published.php?ID=48566
  9. Azarov A.V., Karavaev M.N., Rozhkov S.S. et al. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165549. DOI: 10.34759/trd-2022-123-12
  10. Oreshkin V.I., Meleshin Yu.M., Tsvetkov V.K. Trudy MAI, 2021, no. 120. URL: http://trudymai.ru/eng/published.php?ID=161424. DOI: 10.34759/trd-2021-120-10
  11. Denisov V.P., Dubinin D.V. Fazovye radiopelengatory (Phase direction finders), Tomsk, Izd-vo TUSUR, 2002, 252 p.
  12. Denisov V.P., Dubinin D.V., Erofeev D.V. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2017, no. 4, pp. 11-16.
  13. Porubov G.G. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2018, vol. 21, no. 1, pp. 22-27.
  14. Gubarenko M.A. Vestnik nauki i obrazovaniya, 2015, no. 10, pp. 32-34.
  15. Shirokov I.B. Patent RU 2584968 C1, 20.05.2016.
  16. Kul'ba V.V., Mikrin E.A., Pavlov B.V., Platonov V.N. Teoreticheskie osnovy proektirovaniya informatsionno - upravlyayushchikh sistem kosmicheskikh apparatov (Theoretical foundations of designing information and control systems of spacecraft), Moscow, Nauka, 2006, 579 p.
  17. Demin A.V., Denisov A.V., Letunovskii A.V. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2010, no. 3, pp. 51-59.
  18. Fateev V.F. Malye kosmicheskie apparaty informatsionnogo obespecheniya (Small space vehicles for information support), Moscow, Radiotekhnika, 2010, 320 p.
  19. Zheltov S.Yu., Veremeenko K.K., Kim N.V. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov (Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aircraft), Moscow, Fizmatlit, 2009, 556 p.
  20. Klette R. Komp'yuternoe zrenie. Teoriya i algoritmy (Computer vision. Theory and algorithms), Moscow, DMK Press, 2019, 506 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход