Evaluation of the potential accuracy of multiposition aircraft short-range navigation systems
Аuthors
*, **Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
*e-mail: andreyuff@mail.ru
**e-mail: pekulesh@yandex.ru
Abstract
A possible direction for improving short-range navigation systems is the spatial separation of its radio navigation points, the transition to the principle of multi-position. The problem of estimating the coordinates of aircraft and the potential accuracy of estimates based on the results of receiving radio signals from interconnected ground-based spatially separated radio navigation points and one-time measurements of navigation parameters on an aircraft at a known altitude of its flight has been solved. For the studied 12 variants of multi-position systems of the request-response and non-request type with measurement of ranges, azimuth positions, pseudo-ranges, pseudoradial velocities, amplitude of the electric field strength of radio beacons, the likelihood functions of simultaneous measurements are described by multidimensional normal distribution laws, and coordinate estimates are the position of the maximum of these functions. In accordance with the Cramer's rule, estimates of potential accuracy are determined by means of the Fisher information matrix, for the problem to be solved in the form of combinations of the first derivatives of likelihood functions according to navigation parameters. When calculating the potential accuracy of systems from the components of azimuthal rangefinder beacons, as initial ones, it is proposed to use known limits of measurement of imprecision. When setting the imprecision of other measurements, it is advisable to proceed from the achieved accuracy of measuring the range in satellite radio navigation systems such as GLONASS, followed by determining the required signal-to-noise ratio, through it the mean-square error of measuring frequency, radial velocity, amplitude of the electromagnetic field strength. The condition for ensuring multi-position is the presence of radio visibility to a minimum number of radio navigation points of the system. In order to ensure the isotropy of navigation definitions, the central symmetry of the system is necessary. The maximum accuracy of navigation definitions is achieved near the center of multi-position systems, in the near zone, at a distance up to the radius of the system of 20 km. Based on this, it is advisable to determine the center of the system near the airfield runway for navigation support of landing approach maneuver and landing of aircraft. The results obtained can be used to select rational options for building short-range radio navigation systems.
Keywords:
multi-position aircraft short-range navigation systems, radio beacon, navigation parameters, potential accuracyReferences
- Vladimirov V.L., Kovalev V.V., Khmurov N.N. Sredstva i sistemy radionavigatsionnogo obespecheniya letatel'nykh apparatov (Means and systems of radio navigation support for aircraft), Moscow, Voennoe izdatel'stvo, 1990, 468 p.
- Baburov V.I., Kolesnikov A.K., Stolyarov G.V. Voenno-kosmicheskaya oborona. Problemy blizhnei navigatsii, 2008, no. 3. URL: http://www.vko.ru/koncepcii/problemy-blizhney-navigacii-2
- Belyaev M.P., Ufaev V.A. Voenno-kosmicheskie sily. Teoriya i praktika, 2022, no. 21, pp. 18–31.
- Ufaev V.A., Belyaev M.P. Patent 2778179, G08G 5/02, G01S 1/16, B64C 13/18. Byul. no. 23, 15.08.2022.
- Shapovalov A.B., Azhgirevich I.L., Izmailov-Perkin A.V., Kvetkin G.A., Kostyukov V.V., Sviyazov A.V., Shil'dkret A.B., Shcherbinin V.V. Patent 2770311 RU, G01C 23/00. Byul. no. 11, 15.04.2022.
- Kondrat'ev A.G., Kotov A.F., Markov L.N. Mnogopozitsionnye radiotekhnicheskie sistemy (Multiposition radio technical systems), Moscow, Radio i svyaz', 1986, 264 p.
- Chernyak V.S. Mnogopozitsionnaya radiolokatsiya (Multiposition radar), Moscow, Radio i svyaz', 1993, 416 p.
- Maklashov V.A., Piganov M.N. Trudy MAI, 2022, no, 122. URL: https://trudymai.ru/eng/published.php?ID=164198. DOI: 10.34759/trd-2022-122-10
- Leshko N.A., Petrochenkov D.M., Mozgonov M.Yu., Fedotov A.V. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109495. DOI: 10.34759/trd-2019-108-9
- Serkin F.B., Vazhenin N.A., Veitsel' A.V. Trudy MAI, 2016, no. 86. URL: https://trudymai.ru/published.php?ID=67824
- Ufaev V.A. Sposoby opredeleniya mestopolozheniya i prostranstvennoi identifikatsii istochnikov radioizluchenii: Monografiya. (Methods for determining the location and spatial identification of radio sources: Monograph), Voronezh, Izd-vo «Tsifrovaya poligrafiya», 2019, 430 p.
- Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2015, no. 84. URL: https://trudymai.ru/eng/published.php?ID=63136
- Kishko D.V. Trudy MAI, 2015, no. 82. URL: https://trudymai.ru/eng/published.php?ID=58803
- Fal'kovich S.E. Otsenka parametrov signala (Estimation of signal parameters), Moscow, Sovetskoe radio, 1970, 336 p.
- Bakit'ko R.V., Boldenkov E.N., Bulavskii N.T., Dvorkin V.V., Efimenko V.S., Kosenko V.E., Nartov V.Ya., Petrov A.I., Per'kov A.E., Tyubalin V.V., Urlichich Yu.M., Kharisov V.N., Chebotarev V.E., Shatilov A.Yu. GLONASS. Printsipy postroeniya i funktsionirovaniya (Principles of construction and functioning), Moscow, Radiotekhnika, 2010, 800 p.
- Ufaev V.A., Belyaev M.P. Patent 2792013 RU, G01S3/46, G01C21/04. Byul. № 8, 15.03.2023.
- Ufaev V.A., Belyaev M.P. Novosti navigatsii, 2023, no. 1, pp 21–26.
- Dolukhanov M.P. Rasprostranenie radiovoln (Propagation of radio waves), Moscow, Svyaz', 1972, 336 p.
- Shirman Ya.D., Golikov V.N., Busygin T.N., Kostin G.A., Manzhos V.N., Minevrin N.N., Naidenov B.V., Polyakov V.I., Chelpanov A.S. Teoreticheskie osnovy radiolokatsii (Theoretical foundations of radar), Moscow, Sovetskoe radio, 1970, 560 p.
- MATHCAD 6.0 PLUS. Finansovye, inzhenernye i nauchnye raschety v srede Windows 95. (Mathcad PLus 6.0. Financial, engineering and scientific calculations in Windows 95 environment), Moscow, Informatsionno-izdatel'skii dom «Filin"», 1996, 712 p.
Download