Study of the influence of porosity on physical and mechanical characteristics of polyimide foams


Аuthors

Kalyagin M. Y.*, Rabinsky L. N.**, Shumskaya S. A.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: mukalyagin@yandex.ru
**e-mail: f9_dec@mai.ru
***e-mail: bratinaaa@gmail.com

Abstract

The work is devoted to the study of polyimide foam with different porosity. Such materials are widely used in various spheres of aircraft, shipbuilding, instrumentation and transportation engineering. In particular, they have proven themselves as a foam filler in the manufacture of multilayer parts and elements of machinery in which composite materials are used. In this work, acrimid obtained by foaming technology on the basis of poly(meth)acrylimide with different densities was considered. Samples with different porosity were obtained. Microscopic techniques, including optical and scanning electron microscopy, were used to determine the characteristic pore sizes and their distribution over the material volume. The pore size differs by 9% between samples with densities of 80 kg/m3 and 100 kg/m3.
The study includes three-point bending tests, which resulted in elastic modulus and tensile strength values. The result showed a significant effect of porosity on the elastic modulus of the materials. Thus, the modulus of elasticity of 80 kg/m³ density foam was 136 MPa and that of 100 kg/m³ density was 159 MPa.
In addition to the experimental tests, numerical modeling in quasi-static formulation by the finite element method for the three-point bending process was carried out. The results are in good agreement with the experimental data, confirming the observed effect of porosity on the mechanical properties.
In conclusion, this study suggests that the density and porosity of the foam significantly affect the mechanical properties of polyimide foams. Denser foams with smaller pores have better mechanical properties, making them more suitable for highly loaded, especially composite structures

Keywords:

porosity, acrimid, bending test, modulus of elasticity

References

  1. Sorokin V.A., Kopylov A.V., Tikhomirov M.A., Stirin E.A., Loginov A.N., Fedorov D.Yu., Valui P.V. Trudy MAI, 2015, no. 84. URL: https://trudymai.ru/eng/published.php?ID=63029
  2. Kalyagin M.Yu. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90156
  3. Tyalina L.N., Minaev A.M., Pruchkin V.A. Novye kompozitsionnye materialy (New composite materials), Tambov, Izd-vo TGTU, 2011, 79 p.
  4. Ruslantsev A.N., Dumanskii A.M., Alimov M.A. Trudy MAI, 2017, no. 96. URL: https://trudymai.ru/eng/published.php?ID=85659
  5. Kovalevskaya Zh.G., Bezborodov V.P. Osnovy materialovedeniya. Konstruktsionnye materialy (Fundamentals of materials science. Structural materials), Tomsk, Izd-vo Tomskogo politekhnicheskogo universiteta, 2009, 104 p.
  6. Dudchenko A.A., Basharov E.A. Trudy MAI, 2011, no. 42. URL: https://trudymai.ru/eng/published.php?ID=24261
  7. Berlin A.A. Sorosovskii obrazovatel'nyi zhurnal, 1995, no. 1, pp. 57-65.
  8. Matrenin S.V., Ovechkin B.B. Kompozitsionnye materialy i pokrytiya na polimernoi osnove (Composite materials and coatings on polymer basis), Tomsk, Izd-vo TPU, 2008, 197 p.
  9. Sovremennye tekhnologii proizvodstva. Kompozitsionnye materialy. URL: https://extxe.com/28897/kompozicionnye-materialy-vidy-i-tehnologii-proizvodstva-kompozicionnyh-mater...
  10. Dzh. Piatti. Dostizheniya v oblasti kompozitsionnykh materialov (Advances in composite materials), Moscow, Metallurgiya, 1982, 304 p.
  11. Tashkinov M.A., Shalimov A.S. Fizicheskaya mezomekhanika, 2021, no. 5, pp. 130-137.
  12. Shalimov A.S., Tashkinov M.A. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2020, no. 4, pp. 175-187. DOI: 10.15593/perm.mech/2020.4.15
  13. Nguen N.Kh., Tarlakovskii D.V. Trudy MAI, 2012, no. 53. URL: https://trudymai.ru/eng/published.php?ID=29269
  14. Adams D.F., Lewis E.Q. Experimental study of three-and four-point shear test specimens, Journal of Composites Technology & Research, 1995, vol. 17 (4), pp. 341–349. DOI: 10.1520/CTR10454J
  15. Carlsson L.A., Adams D.F., Pipes R.B. Experimental characterization of advanced composite materials, 1987. DOI: 10.1201/NOE1587161001
  16. Xie M., Adams D.F. Study of three- and four-point shear testing of unidirectional composite materials, Composites, 1995, vol. 26 (9), pp. 653–659. DOI: 10.1016/0010-4361(95)98914-7
  17. Prokudin O.A., Solyaev Yu.O., Babaitsev A.V., Artem'ev A.V., Korobkov M.A. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika. 2020, no. 4, pp. 260-270. DOI: 10.15593/perm.mech/2020.4.22
  18. Tita V., CaliriJúnior M.F. Numerical simulation of anisotropic polymeric foams, Latin American Journal of Solids and Structures, 2012, vol. 9, no. 2, pp. 1-21. DOI: 10.1590/S1679-78252012000200005
  19. Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structures, Elsevier, 2018.
  20. Babaitsev A.V., Burtsev A.Yu., Rabinskii L.N., Solyaev Yu.O. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107879


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход