Deformation of laboratory truncated disc samples with stress concentrators


Аuthors

Tsvik L. B.*, Zenkov E. V.**, Malomigev D. O.***

Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia

*e-mail: tsvik_l@mail.ru
**e-mail: jovanny1@yandex.ru
***e-mail: kbprf13@gmail.com

Abstract

The article assesses the structural strength of sample materials destroyed on standard single-drive testing machines. The stress-strain state (SSS) of laboratory truncated circular disk samples with stress concentrators in the form of grooves was analyzed. It was revealed that the disc truncation along the two symmetrical chords allows for varying the type of SSS (the ratio of principal stresses) in the sample and intensity of stresses in the working zone. The problems of the linear theory of elasticity were solved for samples with different degrees of disc truncation and with different geometric parameters of the groove profile. The computational experiment shows that in the studied range of dimensionless values of the geometric parameters (relative curvature of the groove surface, relative depth of the groove and the degree of truncation of the sample disk), the type coefficient of the stress-strain state P and the stress concentration coefficient Kσ change in the intervals 0 ≤ P ≤ 2 and Kσ < 4. If necessary, concentrating grooves can be located on the loading surface of the samples under consideration, which makes it possible to study the behavior of various materials under conditions of biaxial compression. The analysis of disk deformation showed that these laboratory samples can be used in simulating the type and level of stress-strain state of various structural elements of machines and mechanisms, including highly loaded elements of aircraft and engines used in rocket and space technology. This factor significantly expands the possibilities for assessing the structural strength of materials during laboratory studies of the materials. It was revealed that the type of SSS plays a role in localizing the sources of destruction of highly loaded structural elements made from structural carbon steel St45. The results can be used both for the experimental assessment of the structural strength of materials and for constructing limit state equations corresponding to a SSS level and type.

Keywords:

laboratory sample, stress-strain state, structural strength, computational modeling, variant studies, localization of the source of destruction

References

  1. Kogaev V.P. Makhutov N.A., Gusenkov A.P. Raschety detalei mashin i konstruktsii na prochnost' i dolgovechnost': Spravochnik (Calculations of machine parts and structures for strength and durability: Handbook), Moscow, Mashinostroenie, 1985, 224 p.
  2. Smirnov-Alyaev G.A. Mekhanicheskie osnovy plasticheskoi obrabotki metallov. Inzhenernye metody (Mechanical principles of plastic processing of metals. Engineering methods), Leningrad, Mashinostroenie, 1968, 272 p.
  3. Tsvik L.B., Pimshtein P.G., Borsuk E.G. Problemy prochnosti, 1978, no. 4, pp. 74–77.
  4. Pisarenko G.S., Yakovlev A.P., Matveev V.V. Spravochnik po soprotivleniyu materialov (Handbook on the strength of materials), Kiev, Izd-vo Del'ta, 2008, 816 p.
  5. Vasil'ev B.E., Magerramova L.A., Kolotnikov M.E., Golubovskii E.R., Volkov M.E. Trudy MAI, 2017, no. 96. URL: https://trudymai.ru/eng/published.php?ID=85876
  6. Koutiri I., Bellett D., Morel F. The effect of mean stress and stress biaxiality in high-cycle fatigue, Fatigue & Fracture of Engineering Materials & Structures, 2017, vol. 41 (6). DOI: 10.1111/ffe.12699
  7. Matake T. An explanation on fatigue limit under combined stress, Bulletin of JSME, 1977, issue 141, pp. 257-263. DOI: 10.1299/jsme1958.20.257
  8. Pkhon Kh.K., Sysoev E.O., Kuznetsov E.A., Min K.Kh. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109237. DOI: 10.34759/trd-2019-108-2
  9. Makhutov N.A. Konstruktsionnaya prochnost', resurs i tekhnogennaya bezopasnost': Monografiya (Structural strength, resource and technogenic safety. Monograph), Novosibirsk, Nauka, 2005, 610 p.
  10. Keller I.E., Petukhov D.S. Kriterii prochnosti i plastichnosti (Strength and plasticity criteria), Perm', Izd-vo PNIPU, 2020, 157 p.
  11. Berto F., Campagnolo A., Lazzarin P. Fatigue strength of severely notched specimens made of Ti-6Al-4V, Fatigue & Fracture of Engineering Materials & Structures, 2015, vol. 38 (5), pp. 503-517. DOI: 10.1111/ffe.12272
  12. Leevers P.S., Radon J.C., Culver L.E. Crack growth in plastic panels under biaxial stress, Polymer, 1976, vol. 17 (7), pp. 627-632. DOI: 10.1016/0032-3861(76)90282-2
  13. Bellett D., Morel F., Morel A., Lebrun J.L. A biaxial fatigue specimen for uniaxial loading, Strain, 2011, vol. 47 (3), pp. 227-240. DOI: 10.1111/j.1475-1305.2009.00674.x
  14. Zenkov E.V., Tsvik L.B. Formation of divergent testing efforts and experimental evaluation of material strength under biaxial stretching, PNRPU Mechanics Bulletin, 2015, no. 4, pp. 110-120. DOI: 10.15593/perm.mech/2015.4.07
  15. Zenkov E.V., Tsvik L.B. Accuracy improvement for combined static strength criterion for structures under complex loading, Materials Physics and Mechanics, 2018, vol. 40, pp. 124-132. DOI: 10.18720/MPM.4012018_15
  16. Tsvik L.B., Zenkov E.V. A comparative analysis of the stress-strain state of disc specimens in assessing the structural strength of materials, Engineering Solid Mechanics, 2022, vol. 10, no. 1, pp. 25-34. DOI: 10.5267/j.esm.2021.12.001
  17. Bondar' V.S., Temis Yu.M., Matvienko Yu.G. et al. Konstruktsionnaya prochnost' materialov. Resurs konstruktsii vysokikh parametrov (Structural strength of materials. Lifetime of high-parameter structures), Saint Petersburg, Lan', 2024, 256 p.
  18. Tret'yakova T.V., Tret'yakov M.P., Lunegova E.M. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, 2021, no. 4, pp. 122–135. DOI: 10.15593/perm.mech/2021.4.12
  19. Drucker D.C., Prager W. Soil mechanics and plastic analysis for limit design, Quarterly of Applied Mathematics, 1952, no. 2, pp. 157–165. DOI: 10.1090/QAM/48291
  20. GOST 1497-84. Metally. Metody ispytanii na rastyazhenie (GOST 1497-84. Metals. Tensile test methods), Moscow, Standartinform, 2008, 26 p.
  21. Zen'kov E.V., Tsvik L.B. Sistemy. Metody. Tekhnologii, 2017, no. 2 (34), pp. 28-34.
  22. Tsvik L.B. Vos'maya mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Transportnaya infrastruktura Sibirskogo regiona». Irkutsk, IrGUPS, 2017, vol. 2, pp. 834–839.
  23. Tsvik L.B., Zen'kov E.V., Bocharov I.S., Elovenko D.A. Patent na izobretenie № 2734276, 14.10.2020. Byul. no. 29.
  24. Zenkov E.V., Aistov I.P., Vansovich K.A. Modeling stress state stiffening of the nozzle zone of pressure vessel by finite element method, IP Conference Proceedings, 2019, vol. 2141, pp. 030042. DOI: 10.1063/1.5122092
  25. Tsvik L.B., Tarmaev A.A., Bocharov I.S. Transport Urala, 2019, no. 3 (62), pp. 20-27. DOI: 10.20291/1815-9400-2019-3-20-27
  26. Normy dlya rascheta i proektirovaniya vagonov zheleznykh dorog MPS kolei 1520 mm (nesamokhodnykh). GosNIIV (Standards for the calculation and design of 1520 mm gauge railway carriages of the Ministry of Railways (non-self-propelled). GosNIIV), Moscow, VNIIZhT, 1996.
  27. Krotov S.V., Kononov D.P. Izvestiya Peterburgskogo universiteta putei soobshcheniya, 2022, vol. 19, no, 2, pp. 221-231. DOI: 10.20295/1815-588X-2022-19-2-221-23
  28. Vilimok Ya.A., Nazarov K.A., Evdokimov A.K. Izvestiya TulGTU. Tekhnicheskie nauki, 2013, no. 11, pp. 388–393.
  29. GOST 25.504-82. Raschety i ispytaniya na prochnost'. Metody rascheta kharakteristik soprotivleniya ustalosti (GOST 25.504-82 Calculations and strength tests. Methods for calculating fatigue resistance characteristics), Moscow, IKP Izdatel'stvo standartov, 2004, 56 p.
  30. GOST 25.506-85. Raschety i ispytaniya na prochnost'. Metody mekhanicheskikh ispytanii metallov. Opredelenie kharakteristiki treshchinostoikosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii (GOST 25.506-85 Calculations and strength tests. Methods of mechanical testing of metals. Determination of crack resistance characteristics), Moscow, Izdatel'stvo standartov, 1985, 38 p.
  31. Mathiak F., Krawietz A., Nowack H., Trautmann, K.H. Cruciform Planar Specimen for Biaxial Materials Testing, U.S. Patent 5 144 844, issued Sep. 8, 1992.
  32. Kachanov L.M. Osnovy teorii plastichnosti (Fundamentals of plasticity theory), Moscow, Nauka, 1969, 420 p.
  33. Lur'e A.I. Nelineinaya teoriya uprugosti (Nonlinear theory of elasticity), Moscow, Nauka, 1980, 512 p.
  34. Oden Dzh. Konechnye elementy v nelineinoi mekhanike sploshnykh sred (Finite elements in nonlinear continuum mechanics), Moscow, Mir, 1976, 464 p.
  35. Rychkov S.P. Modelirovanie konstruktsii v srede Femap with NX Nastran (Modeling of structures in the environment Femap with NX Nastran), Moscow, DMK Press, 2013, 784 p.
  36. Zen'kov E.V., Tsvik L.B., Pykhalov A.A. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, no. 7 (54), pp. 6-11.
  37. Tsvik L.B., Mukhomedzyanov N.S., Zen'kov E.V., Eremeev V.K. Transportnaya infrastruktura Sibirskogo regiona, 2017, vol. 2, pp. 786-791.
  38. Peterson R.E. Koeffitsienty kontsentratsii napryazhenii (Stress concentration factors), Moscow, Mir, 1977, 302 p.
  39. Neiber G. Kontsentratsiya napryazhenii (Stress concentration), Leningrad, Gostekhizdat, 1947, 205 p.
  40. Tsvik L.B., Shcheglov B.A., Fedotova S.I., Borsuk E.G. Problemy mashinostroeniya i nadezhnosti mashin, 1993, no. 1, pp. 58.
  41. Yosri A., Zayed A., Saad-Eldeen S., Leheta H. Influence of stress concentration on fatigue life of corroded specimens under uniaxial cyclic loading, Alexandria Engineering Journal, 2021, vol. 60, pp. 5205-5216. DOI: 10.1016/j.aej.2021.04.004
  42. Antonio Carlos de Oliveira Miranda, Marcelo Avelar Antunes, Marco Vinicio Guamán Alarcón, Marco Antonio Meggiolaro et al. Use of the stress gradient factor to estimate fatigue stress concentration factors Kf, Engineering Fracture Mechanics, 2019, vol. 206, pp. 250-266. DOI: 10.1016/j.engfracmech.2018.11.049
  43. GOST 25.502-79. Raschety i ispytaniya na prochnost' v mashinostroenii. Metody mekhanicheskikh ispytanii metallov. Metody ispytanii na ustalost' (GOST 25.502-79 Calculations and strength tests in mechanical engineering. Methods of mechanical testing of metals. Fatigue test methods), Moscow, Izdatel'stvo standartov, 1979, 25 p.
  44. GOST 1050-2013. Metalloproduktsiya iz nelegirovannykh konstruktsionnykh kachestvennykh i spetsial'nykh stalei. Obshchie tekhnicheskie usloviya (GOST 1050-2013 Metal products made from unalloyed high-quality structural and special steels. General technical conditions), Moscow, Standartinform, 2014, 24 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход