MIMO radar based on chirps with slow phase shift keying


Аuthors

Meleshin Y. M.1*, Khasanov M. K.1**, Karpov V. N.2***, Lyalin K. S.1****

1. National Research University of Electronic Technology "MIET", 1, Shokin Square, Zelenograd, Moscow, 124498, Russia
2. National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia

*e-mail: kykymberr@gmail.com
**e-mail: khaes@yandex.ru
***e-mail: vadimkarpov@icloud.com
****e-mail: ksl@miee.ru

Abstract

The article presents the architecture of a continuous-wave radar with multi-channel input and multichannel output (MIMO radar) based on continuous linear frequency modulation (LFM) signals, in which the signals orthogonality on the transmitting antenna elements is ensured by the developed algorithm of alternating-sign formation and processing of chirps. The previously considered MIMO radars based on the LFM signals with phase shift keying are built on the “fast” phase shift keying principle, in which the entire PFS, under which action the manipulation occurs, fits within the framework of one chirps (hereinafter, a pulse means one cycle of frequency change between the extreme values). This article proposes two methods for forming and processing the signals in which “slow” phase shift keying takes place, i.e. a change in the signal phase under the action of the PFS occurs only at the moments of the beginning of the chirps (from pulse to pulse). Additional phase shift keying in the transmitting channels herewith is implemented due to an alternating operation by introducing mixers or single-bit 0/180° phase shifters without using significant hardware complications in the form of digital-to-analog converters or additional heterodyne signal generators.
The article describes and mathematically models two methods, namely a method with alternating accumulation of chirps, in which pulses are accumulated, and a method with alternating fast Fourier transform (FFT) from chirp to chirp.
Based on the research results the inferences were drawn that the first presented method may be applied to create relatively simple systems with extremely limited computing capabilities, while the second method is more classical and allows building full-fledged “range”-“speed” arrays for each angular direction. It is worth noting as well that a combination of the presented methods with partial accumulation before the FFT performing with pulses is possible to achieve the target computational complexity of the DSP operations. The article gives an example of building a radar based on the stated principles in the K-band of frequencies and performs mathematical modeling of the system to confirm its operability; the modeling demonstrated the prospects of this trend for further research.

Keywords:

MIMO, linear frequency modulation, virtual antenna array, radar

References

  1. Makarenko S.I., Timoshenko A.V., Vasil'chenko A.S. Sistemy upravleniya, svyazi i bezopasnosti, 2020, no. 1, pp. 109-146. DOI: 10.24411/2410-9916-2020-10105
  2. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75540
  3. Skryabin Yu.M., Potekhin D.S. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105747
  4. Sychev M.I., Fesenko S.V. Trudy MAI, 2015, no. 83. URL: https://trudymai.ru/eng/published.php?ID=62280
  5. Kvasnov A.V., Gladilin P.E., Pershutkin A.E. Uspekhi sovremennoi radioelektroniki, 2020, vol. 74, no. 8, pp. 63-71.
  6. Sentsov A.A., Polyakov V.B., Ivanov S.A., Pomozova T.G. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173033. DOI: 10.34759/trd-2023-129-21
  7. Pal'guev D.A., Parkhachev V.V., Piunov K.N. et al. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2022, no. 4 (48), pp. 39-50.
  8. Andryushchenko M.S., Golik A.M., Sakhnov S.A. Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu, 2023, no. 7-8 (181-182), pp. 44-49.
  9. Nechaev E.E., Bol'shakov Yu.P. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2006, no. 98, pp. 108-131.
  10. Vezarko D.A., Chechel'nitskii A.S., Koptev V.A., Khalmatov B.M. Mezhdunarodnyi zhurnal gumanitarnykh i estestvennykh nauk, 2024, no. 3-2(90), pp. 156-160.
  11. Chernyak V.S. Uspekhi sovremennoi radioelektroniki, 2011, no. 2, pp. 5-20.
  12. Chapurskii V.V. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie, 2008, no. 3 (72), pp. 69-79.
  13. Pereverzev A.L., Lyalin K.S., Meleshin Yu.M. et al. Nanoindustriya, 2022, vol. 15, no. S8-1 (113), pp. 54-58. DOI: 10.22184/1993-8578.2022.15.8s.54.58
  14. X. Li, X. Wang, Q. Yang and S. Fu. Signal Processing for TDM MIMO FMCW Millimeter-Wave Radar Sensors, IEEE Access, 2021, vol. 9, pp. 167959-167971. DOI: 10.1109/ACCESS.2021.3137387
  15. W. Wang et al. Wideband Gain Enhancement of MIMO Antenna and Its Application in FMCW Radar Sensor Integrated With CMOS-Based Transceiver Chip for Human Respiratory Monitoring, IEEE Transactions on Antennas and Propagation, 2023, vol. 71, no. 1, pp. 318-329. DOI: 10.1109/TAP.2022.3222802
  16. Sit Y.L., Li G., Manchala S., Afrasiabi H., Sturm C., Lubbert U. BPSK-based MIMO FMCW automotive-radar concept for 3D position measurement, 15th European Radar Conference (EuRAD), 2018, Madrid, Spain, pp. 289-292. DOI: 10.23919/EURAD.2018.8546657
  17. Chapurskii V.V. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie, 2011, no. 4 (85), pp. 72-91.
  18. Pan M., Chen B. MIMO high frequency surface wave radar using sparse frequency FMCW signals, International Journal of Antennas and Propagation, 2017. pp. 1-16. DOI: 10.1155/2017/7514916
  19. Hinz J., Zölzer U. A MIMO FMCW radar approach to HFSWR, Advances in Radio Science, 2011, vol. 9, pp. 159-163. DOI: 10.5194/ARS-9-159-2011
  20. Khasanov M.S., Meleshin Y.M., Karpov V.N. Investigation into FMCW MIMO Radar Design Based on Fast Phase Coded Waveforms, 26th International Conference on Digital Signal Processing and its Applications (DSPA), 2024, pp. 1-4.
  21. Kumbul U., Petrov N., Vaucher C.S., Yarovoy A. Phase-coded FMCW for coherent MIMO radar, IEEE Transactions on Microwave Theory and Techniques, 2023, vol. 71, no. 6, pp. 2721-2733. DOI: 10.1109/TMTT.2022.3228950
  22. Bulygin M.L., Mullov K.D. Trudy MAI, 2015, no. 80. URL: https://trudymai.ru/eng/published.php?ID=57040
  23. Hyun E., Oh W., Lee J. -H. Two-Step Moving Target Detection Algorithm for Automotive 77 GHz FMCW Radar, 2010 IEEE 72nd Vehicular Technology Conference - Fall, Ottawa, ON, Canada, 2010, pp. 1-5. DOI: 10.1109/VETECF.2010.5594417
  24. Maiorov D.A. Trudy MAI, 2012, no. 52. URL: https://trudymai.ru/eng/published.php?ID=29549


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход