Change of perigee argument of medium Earth orbit with constant semi-major axis and different eccentricity


Аuthors

Ivanov S. G.*, Grishko D. A.**, Baranov A. A.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: isgsial@mail.ru
**e-mail: dim.gr@mail.ru

Abstract

The problem of impulse correction of the orientation of the apsidal line of the orbit of a space object located in the region of global navigation satellite systems is considered. The semi-major axis and inclination of the orbit are assumed to be known and equal to 26 578 km and 55°, respectively, and the eccentricity can vary from 0 to 0.76 under the action of perturbations from the Sun and the Moon. This effect is due to gravitational resonance, which occurs when the sum of the doubled perigee argument and right ascension of the ascending node is maintained for a long time near the value of 270°. Two opposing objectives are possible: increasing the eccentricity to remove the object from the global navigation systems region or creating a stable near-circular disposal orbit. In both cases, correction of the apsidal line orientation is required. The article studies the costs of the characteristic velocity required for its rotation in the case of a circular orbit in this region with a restriction on preserving the value of the large semi-major axis. It is shown that at eccentricity up to 0.01, transversal velocity impulses of no more than 25 m/s are required to deflect the pericentre argument by 90°. In general case of an elliptical orbit with a fixed initial semi-major axis, a solution has been numerically found that allows to change the orientation of the eccentricity vector, with a decrease of the orbit's major semi-major axis. It is shown that the cost of rotating the apsidal line by 15° varies from 50 m/s to 550 m/s for eccentricity values from 0.1 to 0.76. It is proved that at e < 0.76 formation of a stable disposal orbit or creation and maintenance of gravitational resonance should be realized via the change of perigee argument. The calculations show that the apsidal line rotation is more economical than the node line rotation, which is performed by impulse maneuver or by using an intermediate drift orbit.

Keywords:

elliptical orbit, global navigation satellite systems, Solar and Lunar gravity perturbations, gravitational resonance, argument of perigee, evolution of eccentricity vector, orbit correction maneuvers

References

  1. Ulybyshev S.Yu. Mathematical modeling and comparative analysis of the schemes of using a tow vehicle to solve the problem of removing space debris objects into a burial orbit. Part. 1. Trudy MAI. 2019. No. 106. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=105746
  2. Ulybyshev S.Yu. Mathematical modeling and comparative analysis of the schemes of using a tow vehicle to solve the problem of removing space debris objects into a burial orbit. Part. 2. Trudy MAI. 2019. No. 107. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=107855
  3. Satellite catalog. URL: http://www.celestrak.com/satcat/search.asp
  4. ISO 24113:2019 (E), Space Systems - Space Debris Mitigation Requirements. Impl. 2019 – 07, ISO Central Secretariat, Geneva, 2019. P. 13.
  5. ISO 26872:2019 (E), Space systems - Disposal of satellites operating at geosynchronous altitude. Impl. 2019 – 07, ISO Central Secretariat, Geneva, 2019. P. 46.
  6. U.S. Government Orbital Debris Mitigation Standard Practices, November 2019 Update. URL: https://orbitaldebris.jsc.nasa.gov/library/usg_orbital_debris_mitigation_standard_practices_november...
  7. Jenkin A.B., McVey J.P., Peterson G.E., Sorge M.E. Analysis of ODMSP-compliant near-circular GPS disposal orbits and resulting long-term collision risk. Journal of Space Safety Engineering. 2022. 9 (3). P. 427–439. URL: https://doi.org/10.1016/j.jsse.2022.06.003
  8. Domínguez-González R., Sánchez-Ortiz N., Francesco C. et al. Disposal strategies analysis for MEO orbits. Proceedings of the International Astronautical congress, 2013. Paper ID: IAC-13, A6,2,5, x19061.
  9. Afanas'eva T.I., Gridchina T.A., Kolyuka Yu.F., Lavrent'ev V.G. Selection of disposal orbits for large-size space debris and study of their long-term evolution in different regions of near-Earth space. Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem «Kosmicheskii musor: fundamental'nye i prakticheskie aspekty ugrozy» (Moscow, April 17-19, 2019): sbornik trudov. Moscow: IKI RAN Publ., 2019. 236 p. DOI: 10.21046/spacedebris2019-163-170
  10. Ivanov S., Grishko D. Possible disposal strategies for the O3b and Skif satellite systems. Proceedings of the International Astronautical Congress. 2023. Baku. Azerbaijan. URL: https://www.scopus.com/authid/detail.uri?authorId=56741414400
  11. Kaufman B. Variation of Parameters and Long-Term Behavior of Planetary Orbits. AIAA Paper No. 70-1055. AAS/AIAA Astrodynamics Conference, Santa Barbara, CA, August 1970.
  12. Chao C.C. An Analytical Integration of the Averaged Equations of Variation due to Sun-Moon Perturbations and Its Application. The Aerospace Corporation Report No. SDTR-80-12, October 1979.
  13. Kazmerchuk P.V., Vernigora L.V. Pactical use of EPM and DE ephemeris. Trudy MAI. 2022. No. 125. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168190. DOI: 10.34759/trd-2022-125-18
  14. Chao C.C. Applied Orbit Perturbation and Maintenance. The Aerospace Press, El Segundo, California, 2005. 297 p.
  15. Lidov M.L. The evolution of the orbits of artificial satellites under the influence of gravitational perturbations of external bodies. Iskusstvennye sputniki Zemli. 1961. V. 8, P. 5-45. (In Russ.)
  16. Kuznetsov E.D., Avvakumova E.A. Dynamical evolution of space debris in the vicinity of GNSS regions. Acta Astronautica. 2018. V. 158, P. 140-147. URL: https://doi.org/10.1016/j.actaastro.2018.02.001
  17. Alessi E.M. et al. Effectiveness of GNSS disposal strategies. Acta Astronautica. 2014. V. 99, P. 292-302. URL: https://doi.org/10.1016/j.actaastro.2014.03.009
  18. Alessi E.M. et al. A Numerical Investigation on the Eccentricity Growth of GNSS Disposal Orbits. Celestial Mechanics and Dynamical Astronomy. 2016. V. 125, P. 71-89. URL: https://doi.org/10.1007/s10569-016-9673-4
  19. Celletti A., Gales C. A study of the lunisolar secular resonance 2ω ̇+Ω ̇=0. Frontiers in Astronomy and Space Sciences. 2016. V. 3. DOI: 10.3389/fspas.2016.00011
  20. Baranov A.A. Spacecraft Manoeuvring in the Vicinity of a Near-Circular Orbit, Cambridge Scholars Publishing. 2022.
  21. Ivanov S.G., Grishko D.A., Baranov A.A. Change of right ascension of the ascending node of medium Earth orbits with constant semi-major axis and different eccentricity. Inzhenernyi zhurnal: nauka i innovatsii. 2024. No. 9. (In Russ.). DOI: 10.18698/2308-6033-2024-9-2383
  22. Baranov A.A., Baranov A.A. Maneuvers of formation of satellite systems. Trudy MAI. 2009. No. 34. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=8223


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход