Action of Transverse Non-Stationary Force on a Hinged Moment Elastic Rectangular Plate (Simplified Model)

Аuthors
*, **, ***Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: Ngocdatktqs@mail.ru
**e-mail: tdvhome@mail.ru
***e-mail: greghome@mail.ru
Abstract
The transient bending of a moment-elastic rectangular plate under a concentrated force is considered. A simplified model is applied, using the Kirchhoff-Love hypothesis and neglecting transverse shear deformation. The initial conditions are zero, indicating that the system is at rest at the moment the force is applied. Generalized hinge support is assumed at the boundaries, which sets the necessary boundary conditions.
To solve this problem, double trigonometric series in spatial coordinates are used. Such series allow the solution to be decomposed as a sum of modes with different frequency components, each describing an individual contribution to the deformation. The equation with respect to the coefficients of these series reduces to a system of ordinary differential equations in time. The Laplace transform is applied to integrate this system, allowing a transition to the time domain representation. The solution for the function’s original form is recovered using the residue calculation in the complex plane, ensuring accurate and stable restoration of the temporal dependence.
As an example of loading, a normal force applied at the center of the square plate is considered. The force’s time variation follows the Heaviside function, modeling an instantaneous load application, characteristic of dynamic impact effects. The plate is made from a composite based on aluminum shot in an epoxy matrix, which provides high strength at relatively low weight and good damping properties.
For numerical calculations, a summation procedure for the series with a pre-specified accuracy in the continuous norm is implemented. This avoids the accumulation of errors and ensures result convergence. This method can be useful for modeling various cases of dynamic loading on composite plates, which is crucial for the aerospace industry, where accurate prediction of structural behavior under transient loads is of critical importance.
Keywords:
moment elastic plate, Kirchhoff-Love hypothesis, equations of motion, physical relations, deflection, angle of rotation, internal force factors, double trigonometric series.References
- Lai Tkhan' Tuan, Tarlakovskii D.V. Propagation of Nonstationary Axisymmetric Disturbances from the Surface of a Sphere Filled with a Cosserat Pseudo-Elastic Medium. Trudy MAI. 2012. No. 53. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=29267
- Nguen Ngok Khoa, Tarlakovskii D.V. Nonstationary Surface Influence Functions for an Elastic-Porous Half-Plane. Trudy MAI. 2012. No. 53. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=29269
- Chan Le Tkhai, Tarlakovskii D.V. Moment Elastic Half-Plane Under the Action of Nonstationary Surface Normal Displacements. Trudy MAI. 2018. No. 102. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=99731
- Nguen Tkhan' Tung, Tarlakovskii D.V. Antiplane Nonstationary Motion of an Electromagnetic Elastic Half-Space Considering Piezoelectric Effects. Trudy MAI. 2019. No. 105. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=104123
- Levitskii D.Yu., Fedotenkov G.V. Nonstationary Deformed State of the Timoshenko Plate. Trudy MAI. 2022. No. 125. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168157. DOI: 34759/trd-2022-125-05
- Tarlakovskii D.V., Mai Kuok Chien. Initial-Boundary Problems for Moment Elastic Plates. Materialy XII Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Problemy bezopasnosti na transportE», posvyashchennaya 160-letiyu Bel. zh. d. (November, 24–25, 2022, Gomel', Belarus). Gomel': Belorusskii gosudarstvennyi universitet transporta Publ., 2023. P. 262–263.
- Quoc Chien Mai, Ryazantseva M.Yu., Tarlakovskii D.V. Generalized Linear Model of Dynamics of Elastic Moment Shells Advanced Structured Materials. Deformation and Destruction of Materials and Structures Under Quasi-static and Impulse Loading. Springer Nature. Switzerland AG, 2020. V. 186. P. 273–293. URL: https://doi.org/10.1007/978-3-031-22093-7_11
- Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. Generalized Linear Model of Dynamics of Thin Elastic Shells. Uchenye zapiski Kazanskogo universiteta. Seriya fiziko-matematicheskie nauki. 2018. V. 160, No. 3. P. 561–577. (In Russ.)
- Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. Obshchaya teoriya uprugikh obolochek (General Theory of Elastic Shells: Textbook). Moscow: Izd-vo MAI Publ., 2018. 112 p.
- Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. Uprugie plastiny i pologie obolochki (Elastic Plates and Shallow Shells: Textbook). Moscow: Izd-vo MAI Publ., 2018. 92 p.
- Okonechnikov A.S., Tarlakovskii D.V., Fedotenkov G.V. Obobshchennye funktsii v mekhanike deformiruemogo tverdogo tela. Integral'nye preobrazovaniya i differentsial'nye uravneniya (Generalized Functions in the Mechanics of Deformable Solids. Integral Transforms and Differential Equations: Textbook). Moscow: Izd-vo MAI-PRINT Publ., 2019. 100 p.
- Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in Continuous Media). Moscow: Fizmatlit Publ., 2004. 472 p.
- Kudryavtsev L.D. Kurs matematicheskogo analiza. V. II. (Course of Mathematical Analysis V. II.). Moscow: Vysshaya shkola Publ., 1981. 584 p.
- Erofeev V.I. Volnovye protsessy v tverdykh telakh s mikrostrukturoi. Wave Processes in Solids with Microstructure. Moscow: Moscow State University Publishing, 1999. 328 p.
- Gerasimov S.I., Erofeev V.I., Soldatov I.N. Volnovye protsessy v sploshnykh sredakh (Wave Processes in Continuous Media). Sarov: Izd-vo RFYATS-VNIIEHF Publ., 2012. 260 p.
- Lavrent'ev M.A., Shabat B.V. Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable). Moscow - Leningrad: GITTL Publ., 1951. 610 p.
- Do Ngok Dat, Tarlakovskii D.V. Nonstationary Bending of a Hinge-Supported Moment Elastic Rectangular Plate – The Simplest Model. Materialy XXIX Mezhdunarodnogo simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred» im. A.G. Gorshkova (Kremenki, 15–19 May, 2023). Moscow: OOO "TRP" Publ., 2023. P. 102.
- Do Ngok Dat, Tarlakovskii D.V. Bending of a Hinge-Supported Moment Elastic Rectangular Plate Using Two Simplifying Hypotheses Under the Influence of Nonstationary Loading. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashch. 70-letiyu BeLIIZHTa – BeLGUTa (Gomel', 16–17 November, 2023). Gomel': BeLGUT Publ., 2023. Ch. 2. P. 156–158.
- Novatskii V. Teoriya uprugosti (Theory of Elasticity). Moscow: Mir Publ., 1975. 872 p.
- Tarlakovskii D.V., Farmanyan A.Zh., Gafurov U.S. Equations of Motion for an Isotropic Spherical Moment Elastic Shell. Problemy prochnosti i plastichnosti. 2024. V. 86, No. 2. P. 168–181. (In Russ.). DOI: 10.32326/1814-9146-2024-86-2-168-181
- Mirzakabilov N.Kh. Methods for calculating the oscillations of a viscoelastic multilayer (three-layer) plate. Universum: tekhnicheskie nauki. 2024. No. 7-2 (124). P. 39-43. (In Russ.)
- Belyankova T.I., Vorovich E.I., Turchin A.S. SH-waves on the surface of a bimorph magneto-electroelastic plate. Nauka Yuga Rossii. 2024. V. 20, No. 2. P. 3-15. (In Russ.). DOI: 10.7868/S25000640240201
- Rogacheva N.N., Zheglova Yu.G. Problem of Plate Bending in the Moment Asymmetric Theory of Elasticity. International Journal for Computational Civil and Structural Engineering. 2023. V. 19, No. 2. P. 71-80. DOI: 10.22337/2587-9618-2023-19-2-71-80
- Pleskachevskii Yu.M., Starovoitov E.I., Leonenko D.V. Bending of a three-layer circular plate with a ring load in a neutron flux. Aktual'nye voprosy mashinovedeniya. 2023. V. 12, P. 47-51. (In Russ.)
- Starovoitov E.I., Yarovaya A.V., Abdusattarov A. Bending of a three-layer plate in a temperature field under momentary load. Mekhanika. Issledovaniya i innovatsii. 2023. No. 16. P. 189-195. (In Russ.)
- Malinin G.V. Methods for calculating ribbed plates for strength and stability. Trudy MAI. 2021. No. 121. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=162655. DOI: 10.34759/trd-2021-121-08
- Koreneva E.B. Unsymmetric Oscillations of Anisotropic Plate Having an Additional Mass. International Journal for Computational Civil and Structural Engineering. 2021. V. 17, No. 1. P. 48-54. DOI: 10.22337/2587-9618-2021-17-1-48-54
- Zavyalova K.N., Shishmarev K.A., Korobkin A.A. The Response of a Poroelastic Ice Plate to an External Pressure. Journal of Siberian Federal University. Mathematics and Physics. 2021. V. 14, No. 1. P. 87-97. DOI: 10.17516/1997-1397-2021-14-1-87-97
- Leonenko D.V. Elastic bending of a three-layer circular plate with step-variable thickness. Mechanics of Machines, Mechanisms and Materials. 2021. No. 1 (54). P. 25-29. DOI: 10.46864/1995-0470-2020-1-54-25-29
- Dobryshkin A.Yu., Sysoev O.E., Sysoev E.O. Effective test stands for studying natural vibrations of open cylindrical shells and plates. Trudy MAI. 2020. No. 113. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=117957. DOI: 10.34759/trd-2020-113-01
- Sabirov R.A. Compound bending of an orthotropic plate. Siberian Journal of Science and Technology. 2020. V. 21, No. 4. P. 499-513. DOI: 10.31772/2587-6066-2020-21-4-499-513
- Vardanyan S.V. Simplified method for solving the problem of transverse bending of elastic micropolar plates. Prikladnaya matematika i mekhanika. 2019. V. 83, No. 1. P. 126-133. (In Russ.). DOI: 10.1134/S0032823519010132
- Tovstik P.E. Two-dimensional model of an anisotropic plate of second-order accuracy. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya. 2019. V. 6, No. 1. P. 157-169. (In Russ.). DOI: 10.21638/11701/spbu01.2019.112
- Firsanov V.V., Zoan K.KH. Study of the stress-strain state of symmetrical rectangular plates of arbitrary geometry based on an improved theory. Trudy MAI. 2018. No. 103. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=100589
- Erkov A.P., Dudchenko A.A. On the stability of plates with variable rigidity. Trudy MAI. 2018. No. 103. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=100622
- Denisov S.L., Medvedskii A.L. Development and verification of a numerical-analytical method for calculating the response of plates to broadband acoustic impact. Trudy MAI. 2016. No. 91. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=75542
- Starovoitov E.I., Lokteva N.A., Starovoitova N.A. Deformation of three-layer composite orthotropic rectangular plates. Trudy MAI. 2014. No. 77. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=53018
- Starovoitov E.I., Leonenko D.V. Vibrations of circular three-layer plates on an elastic foundation under parabolic loads. Trudy MAI. 2014. No. 78. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=53490
- Sarkisyan S.O. Mathematical model of micropolar elastic thin plates and features of their strength and stiffness characteristics. Prikladnaya mekhanika i tekhnicheskaya fizika. 2012. V. 53, No. 2 (312). P. 148-156. (In Russ.)
- Sarkisyan S.O., Sarkisyan A.A. General dynamic theory of micropolar elastic thin plates with free rotation and features of their free vibrations. Akusticheskii zhurnal. 2011. V. 57, No. 4. P. 461-469. (In Russ.)
- Proturo I.I. Cylindrical bending of a three-layer orthotropic plate with a rigid overlay. Materialy, tekhnologii, instrumenty. 2011. V. 16, No. 3. P. 5-9. (In Russ.)
- Sarkisyan S.O. Features of the stress-strain state of thin plates within the framework of micropolar elasticity theory. Vychislitel'naya mekhanika sploshnykh sred. 2009. V. 2, No. 1. P. 81-95. (In Russ.). DOI: 10.7242/1999-6691/2009.2.1.6
- Sarkisyan S.O. Boundary problems of the asymmetric elasticity theory for thin plates. Prikladnaya matematika i mekhanika. 2008. V. 72, No. 1. P. 129-147. (In Russ.)
- Sarkisyan S.O. General models of micropolar elastic thin plates. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Matematicheskoe modelirovanie sistem i protsessov. 2008. No.16. P. 111-120. (In Russ.)
- Vashchenko A.V. Determining the dependence of fuel mass needed for interorbital transfers and the mass of a molecular protective screen on the height of the working orbit of a satellite intended for producing semiconductor plates by molecular beam epitaxy. Trudy MAI. 2007. No. 26. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=34031
- Afanas'ev A.A., K'i S. Study of the fatigue life of perforated plates and cylindrical panels. Trudy MAI. 2005. No. 19. (In Russ.) URL: https://trudymai.ru/eng/published.php?ID=34159
Download