Amended estimate of landing danger coefficient while descent along glideslope with account for vertical wind

System analysis, control and data processing


Eremin A. I.*, Selvesyuk N. I.**

State Institute of Aviation Systems, 7, Victorenko str., Moscow, 125319, Russia



The article envisages an approach to aircraft flight-safety checkout system developing at the crucial flight stages with account for external factors and piloting errors. The kernel of the safety checkout system algorithmic provision is analytical calculation of integral danger coefficient.

Most of the accidents with human casualties occur while discent and landing. In this connection, auxiliary means for flight-safety automated control should present onboard an aircraft.

The problem of continuous aircraft landing safety control in longitudinal channel after beginning the descent along the glideslope under vertical wind action and piloting error was formulated and solved.

The specific feature of the approach proposed in the article consists in forecasting the potential consequences due to the dangerous deviations from the glide path at the hypothesis on optimal threat elimination by specified integral criterion evaluating the landing quality at the end of landing. Bellman’s dynamic programming method was employed to compute this criterion.

Scaling factors of the formula for integral danger coefficient computation were determined by computer modeling for various initial data with account of the initial piloting errors while vertical wind action in the process of the aircraft descent along the glideslope.

The article demonstrated that the suggested model for qualitative danger evaluation while landing adequately imitated pilot’s anxiety increasing and its subsiding after hazardous situation elimination.


optimal control, the dynamic programming method, risk function, analytical design of optimal regulators


  1. Boeing Commercial Airplanes. Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations 1959 – 2016, Aviation Safety, USA, Washington, Jjuly 2017, available at:

  2. Blin K., Bonnans F., Hoffman E., Zeghal K. Conflict resolution in presence of uncertainty: A case study of decision making with dynamic programming // Proc. AIAA Guidance, Navigation and Control Conference, Montreal, 2001. available at:

  3. Mikhailin D.A. Nauchnyi vestnik MGTU GA, 2017, no. 5, pp. 116 – 130.

  4. Dugin G.S. Vestnik transporta, 2014, no. 2, pp. 34 – 37.

  5. Greenberg A.D., Small R.L., Zenyuh J.P., Skidmore M.D. Monitoring for hazard in flight management systems, European Journal of Operational Research, 1995, no. 1, pp. 5 – 24.

  6. Petunin V.I., Neugodnikova L.M. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2014, no. 4 (65), pp. 99 – 104.

  7. Berestov L.M., Kharin E.G., Yakushev A.F., Volkov V.K., Kozhurin V.R., Sidorov N.V., Kalinin Yu.I., Poltavets V.A., Pavlov M.M., Boris S.Yu., Vid V.I., Dedesh V.T., Saparina T.P., Golovnev V.F. Patent SU 2128854 C1, 10.04.1999.

  8. Soldatkin V.M. Metody i sredstva postroeniya bortovykh informatsionno-upravlyayushchikh sistem obespecheniya bezopasnosti poleta (Methods and means of developing flight information and control systems for flight safety provision), Kazan’, Kazanskii gosudarstvennyi tekhnicheskii universitet im. A. N. Tupoleva, 2004, 349 p.

  9. Pritchett A.R., Vandor B., Edwards K. Testing and implementing cockpit alerting systems, Reliability engineering & system safety, 2002, no.75 (2), pp. 193 – 206. DOI: 10.1016/S0951-8320(01)00094-1.

  10. Kuchar J.K., Walton D.S., Matsumoto D.M. Integrating objective and subjective hazard risk in decision-aiding system design, Reliability engineering & system safety, 2002, no. 75 (2), pp. 207 – 214.

  11. Abdrashitov R.G., Martynov A.V. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Sukhogo. 2002, vol. 2, no. 8, pp. 55 – 58.

  12. Parunak H.V, Brueckner S.A., Odell J.J. Swarming coordination of multiple UAVS for collaborative sensing. Presented at the Second, 2ND AIAA Unmanned Unlimited Systems Technologies and Operations Aerospace Land and Sea Conference and Workshop & Exhibit, San Diego, CA, 15-18 Sept 2003, available at:

  13. Kublanov M.S., Tsypenko V.G. Mathematical modelization system for aircraft flight dynamics simulation, International Aerospace Congress: Proceedings, 1994, no. 2, pp. 92 – 93.

  14. Brooker P. Future air traffic management: quantitative en route safety assessment, The Journal of navigation, 2002, no. 2, pp.197 – 211.

  15. Golpaswamy S., Hedrick J.K. Robust Adaptive Nonlinear Control of High Performance Aircraft, Proceedings of the American Control Conference, 1990, pp. 1279 – 1283.

  16. Elliot J.R. NASA’s Advanced Control Law Program for the F-8 Digital Fly-by-Wire Aircraft, IEEE Transactions on Automatic Control, Oct. 1977, vol. AC-22, no. 5, pp. 735 – 757.

  17. Eremin A.I., Lebedev G.N., Chekhov I.A. Nauchnyi vestnik MGTU GA, 2016, no. 226 (4), pp. 90 – 100.

  18. Lebedev G.N., Malygin V.B., Tin Pkhon Chzho, Zo Min Taik. Novye tekhnologii, mekhatronika, avtomatizatsiya upravleniya, 2012, no. 12, pp. 50 – 53.

  19. Lebedev G.N., Tin Pkho Dzho. Vestnik Penzenskogo gosudarstvennogo universiteta, 2014, no. 1, pp. 72 – 80.

  20. Mikhailin D.A., Allilueva N.V., Rudenko E.M. Trudy MAI, 2018, no. 98, available at:

  21. Bellman R. Dinamicheskoe programmirovanie (Dynamic programming), Moscow, Inostrannaya literatura, 1960, 400 p.

  22. Letov A.M. Dinamika poleta i upravlenie (Flight Dynamics and Control), Moscow, Nauka, 1969, 360 p.

  23. Kuzin A. Yu., Kurmakov D. V., Luk’yanov A. V., Mikhailin D. A. Trudy MAI, 2013, no. 70, available at:

Download — informational site MAI

Copyright © 2000-2021 by MAI