On the accuracy of direct georeferentiation of uavs in areas with different climatic conditions


DOI: 10.34759/trd-2022-126-26

Аuthors

Huseynov H. A.1*, Zulfugarli P. R.1**, Abdurrakhmanova I. H.2

1. Azerbaijan Technical University, 25, Hussein Javid prosp., Baku, 370073, Azerbaijan
2. National Aerospace Agency of Azerbaijan Republic, NASA, 1, Suleyman Sani Akhundov str., Baku, AZ1115, Azerbaijan Republic

*e-mail: tk_xt2001@mail.ru
**e-mail: Peri.rzayeva30@gmail.com

Abstract

The tasks of carrying out measurements with relatively high temporal and spatial resolution using UAVs can be successfully performed when carrying out accurate georeferentiation of their position, i.e. linking photogrammetric devices to any coordinate system. There are indirect and direct georeferentiation. With indirect georeferencing, the real coordinates of ground control points (GCP) are taken into account and they are compared with the measurement results of these points in the images. With direct georeferentiation, the direct use of known objects in the image is carried out. An unambiguous determination of the optimal density of GCP placement in RTK GPS systems does not seem to be justified, since the total influence of both technical factors and meteorological factors (water vapor, pressure, temperature) is taken into account. This article suggests a way to account for the influence of such a common factor. The definition of such a generalized factor and the assumption that the magnitude of this factor is not constant in space allows us to formulate and solve the optimization problem of calculating the optimal dependence of the GCP placement density on the specified generalized indicator. The accuracy of direct georeferencing of UAVs in zones with different climatic conditions is analyzed. The optimization problem of finding such indicators of georeferentiation of measuring instruments in x and y as the density of GCP placement (control points) and the pedestal of exponential dependence of the error of georeferentiation on the number of established control points is formulated and solved. It is shown that if we assume the presence of an analytical dependence of the number of control points along the flight path on the value of the specified pedestal, then the minimum of the average integral value of the relative error of referencing is achieved with the presence of an inverse logarithmic dependence of the number of control points on the height of the above-marked pedestal.

Keywords:

georeferentiation, unmanned aerial vehicle, measurements, optimization, control points

References

  1. Zhang H., Aldana-Jague E., Clapuyt F., Wilken F., Vanacker V., Van Oost K. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure-from-motion (SfM) photogrammetry and surface change detection, Earth Surface Dynamics, 2019, vol. 7, pp. 807-827. DOI:10.5194/esurf-7-807-2019
  2. Eltner A., Kaiser A., Castillo C., Rock G., Neugirg F., Abellan A. Image-based surface reconstruction in geomorphometry-merits, limits and developments, Earth Surface Dynamics, 2016, vol. 4. Pp. 359-389. DOI:10.5194/esurf-4-359-2016
  3. Kim D.W., Yun H.S., Jeong S.J., Kwon Y.S., Kim S.G., Lee W.S., Kim H.J. Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery, Remote Sensing, 2018, vol. 10, pp. 563. DOI:10.3390/rs10040563
  4. Lian X., Li Z., Yuan H., Hu H., Cai Y., Liu X. Determination of the stability of high-steep slopes by global navigation satellite system (GNSS) real time monitoring in Long Wall Mining, Applied Sciences, 2020, vol. 10, pp. 1952. DOI:10.3390/app10061952
  5. Long N., Millescamps B., Guillot B., Pouget F., Dumon A., Lachaussee N., Bertin X. Monitoring the topography of a dynamic tidal inlet using UAV imagery, Remote Sensing, 2016, vol. 8, pp. 387. DOI:10.5194/isprs-archives-XLI-B1-1127-2016
  6. Immerzeel W.W., Kraaijenbrink P.D.A., Shea J., Shrestha A., Pelliciotti F., Bierkens M.F.P., De Jong S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles, Remote Sensing Environ, 2014, vol. 150, pp. 93-103. DOI: 10.1016/J.RSE.2014.04.025
  7. Skryabin Yu.M., Potekhin D.S. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105747
  8. Kartukov A.V., Merkishin G.V., Nazarov A.N., Egorov V.V. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng//published.php?ID=116371. DOI: 10.34759/TRD-2020-112-12
  9. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  10. Kornilov A.V., Korchagin K.S., Losev V.V. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156235. DOI:10.34759/TRD-2021-117-09
  11. Ivashova N.D., Mikhailin D.A., Chernyakova M.E., Shanygin S.V. Trudy MAI, 2019, no. 104. URL: https://trudymai.ru/eng/published.php?ID=102223
  12. Bortakovskii A.S., Uryupin I.V. Trudy MAI, 2020, no. 113. URL: https://trudymai.ru/eng/published.php?ID=118185. DOI:10.34759/trd-2020-113-17
  13. Nolan M., Larsen C., Sturm M. Mapping snow depth from manned aircraft on landspace scales at centimeter resolution using structure-from-motion photogrammetry, Cryosphere, 2015, vol. 9, pp. 1445-1463. DOI: 10.594/tc-9-1445-2015
  14. Hugenholtz C., Brown O., Walker J., Barchyn T. E., Nesbit P., Kucharczyk M., Myshak S. Spatial accuracy of UAV-derived orthoimagery and topography: comparing photogrammetric models processed with direct geo-referencing and ground control points, Geomatica, 2016, vol. 70, pp/ 21-30. DOI:10.5623/cig2016-102
  15. Liu X., Lian X., Yang W., Wang F., Han Y., Zhang Y. Accuracy assessment of a UAV direct georeferencing method and impact of the configuration of ground control points, Drones, 2022, vol. 6, pp. 30. URL: https://doi.org/10/3390/drones6020030
  16. Aguera-Vega F., Carvajal-Ramirez F., Martinez-Carricondo P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle, Measurement, 2017, vol. 98, pp. 221-227. DOI:10.1016/j.measurement.2016.12.002
  17. Tahar K.N. An evaluation on different number of ground control points in unmanned aerial vehicle photogramm etric block, The International Archives of the Photogrammetry, Remote Sensing, 2013, vol. 40, pp. 93-98. URL: https://doi.org/10.5194/isprsarchives-XL-2-W2-93-2013
  18. Martinez-Carricondo P., Aguera Vega F., Carvajal-Ramirez F., Mesas-Carrascosa F., Garcia-Ferrer A., Perez-Porras F. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points, International Journal of Applied Earth Observation and Geoinformation, 2018, vol. 72. DOI:10.1016/j.jag.2018.05.015
  19. Reshetyuk Y., Martensson S.G. Generation of highly accurate digital elevation models with unmanned aerial vehicles, Photogrammetric Record, 2016, no. 31, no. 143-165. DOI:10.1111/phor.12143
  20. El’sgol’ts L.E. Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential equations and calculus of variations), Moscow, Nauka, 1974, 432 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход