Computer model of the satellite communication and data relay system radio channel during multiposition signal transmission


DOI: 10.34759/trd-2022-127-10

Аuthors

Brodsky M. S., Zvonarev V. V.*, Khubbiev R. V., Sherstuk A. V.**

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: zvonarevvitalii@yandex.ru
**e-mail: vka@mail.ru

Abstract

The paper proposes mathematical model of radio channel of the communication and data relay satellite system (CDRSS) in case of multi-position signal transmission by several spatially separated radio-electronic equipments. Based on the proposed mathematical model, computer model has been developed for estimating the noise immunity of signal reception under given technical limitations. The computer model under consideration makes it possible to calculate with high accuracy the values of the energy characteristics of radio-electronic equipments, such as the average radiated power of the equipments; transmitting (receiving) antenna gain; effective isotropically radiated power; ratio of signal bit energy to noise power spectral density; the ratio of the total signal power to the noise power at the input of the receiving device, at which the required noise immunity of the CDRSS facilities is ensured.

A quantitative measure of radio-electronic equipments noise immunity is the probability of a bit error. To calculate the probability of a bit error, an algorithm for estimating the noise immunity of signal reception has been developed, which, unlike the existing ones, allows calculating the probability of a bit error for radio-electronic equipments space-separated emitting pairwise correlated signals in the direction of the receiving antenna of the satellite CDRSS.

The proposed algorithm allows you to calculate:

  • spatial and temporal characteristics of radio visibility zones of transmitting radio-electronic and receiving equipments of CDRSS;
  • energy characteristics of radio links;
  • bit error probability.

The article gives an example of calculating bit error probability during multi-position signal transmission in the direction of the receiving antenna of satellite CDRSS, oriented towards the orbital electronic equipments. The simulation results testify to the correctness of the approach and make it possible to carry out systematic studies of the dependence of the energy characteristics of the receiving equipments of the CDRSS on the number of low-power transmitting equipments emitting pairwise correlated signals.

The proposed computer model can be used:

  • to substantiate the tactical and technical requirements for a promising CDRSS;
  • to assess the effectiveness of the functioning of the CDRSS in a complex electromagnetic environment;
  • to justify the directions of modernization of the CDRSS.
  • Keywords:

    noise immunity, bit error probability, noise-to-signal ratio, math modeling

    References

    1. Zvonarev V.V., Moroz A.V., Sherstyuk A.V. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105683
    2. Tsvetkov V.A., Kondrat’eva S.G. Trudy MAI, 2019, no. 108. URL: http://trudymai.ru/eng/published.php?ID=109430. DOI: 10.34759/trd-2019-108-6
    3. Zvonarev V.V., Popov A.S., Pimenov V.F. Voprosy radioelektroniki, 2020, no. 12, pp. 38–43. DOI: 10.21778/2218-5453-2020-12-38-43
    4. Borisov V.I., Zinchuk V.M. Pomekhozashchishchennost’ sistem radiosvyazi. Veroyatnostno-vremennoi podkhod (Noise immunity of radio communication systems. Probabilistic-temporal approach), Moscow, RadioSoft, 2008, 260 p.
    5. Zubarev A.E., Pozov A.V., Prikhod’ko A.I. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal, 2019, no. 1 (79), pp. 53–59. DOI: 10.23670/IRJ.2019.79.1.009
    6. Volkhonskaya E.V., Korotei E.V., Vlasova K.V., Rushko M.V. Izvestiya KGTU, 2017, no. 46, pp. 165–174.
    7. Buchinskii D.I., Voznyuk V.V., Fomin A.V. Trudy Voenno-kosmicheskoi akademii im. A.F.Mozhaiskogo, 2019, no. 671, pp. 120-127.
    8. Parshutkin A.V., Maslakov P.A. Trudy SPIIRAN, 2017, no. 4 (53), pp. 159-177.
    9. Ageev F.I., Voznyuk V.V. Trudy MAI, 2022, no. 124. URL: http://trudymai.ru/eng/published.php?ID=167070. DOI: 10.34759/trd-2022-124-15
    10. Nabor TLE dlya sputnikov. URL: https://r4uab.ru/tle/
    11. NORAD Two-Line Element Sets Current Data Today from The Center for Space Standards & Innovation. URL: https://www.celestrak.com/NORAD/elements/
    12. Vlasov S.A. Teoriya poleta kosmicheskikh apparatov (Theory of spacecraft motion), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2007, 435 p.
    13. Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie (Digital communication. Theoretical foundations and practical application), Moscow, Izdatel’skii dom «Vil’yams», 2007, 1104 p.
    14. WRS 18/13-R. Raschet veroyatnosti vrednykh pomekh mezhdu kosmicheskimi setyami. (Otnosheniya C/I). URL: https://docs.yandex.ru/docs/view?tm=1666985827&tld=ru&lang=ru&name
    15. Voskresenskii D.I. Raschet zerkal’nykh antenn (Calculation of mirror antennas), Moscow, Izd-vo MAI, 2005, 30 p.
    16. Kubanov V.P. Napravlennye svoistva antennykh reshetok (Directional properties of antenna arrays), Samara, PGUTI, 2015, 56 p.
    17. Fink L.M. Teoriya peredachi diskretnykh soobshchenii (Theory of transmission of discrete messages), Moscow, Izd-vo Sovetskoe radio, 1970, 728 p.
    18. Kotel’nikov P.L. Teoriya potentsial’noi pomekhoustoichivosti (Theory of potential noise immunity), Moscow, Gosenergoizdat, 1956, 152 p.
    19. Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki (Theoretical Foundations of Statistical Radio Engineering), Moscow, Sovetskoe radio, 1969. Vol. 1. 752 p.
    20. Zvonarev V.V., Popov A.S. Radiotekhnika, 2019, no. 4, pp. 79-83. DOI: 10.18127/j00338486-201904-79

    21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход