Development of a simulation model of the lidar collision warning system of a service vehicle


DOI: 10.34759/trd-2023-128-15

Аuthors

Koshkarov A. S.*, Semenova V. P.**

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

*e-mail: koshkarof@gmail.com
**e-mail: vsvally@mail.ru

Abstract

The article describes the order of mathematical model developing of the lidar for the collision warning system of a service vehicle on the aerodrome territory while the aircraft maintenance. Based on the considered specifics of traffic organization of the service vehicles on the aerodrome territory and engineering software pack MATLAB, a model of a fuel tanker movement while the TU-204 aircraft operation at the moment of peak service schedule congestion. The relevance of the presented model consists in the following. Transition to the new economic paradigm and digital economy is impossible without the expansion of air transportation. Increasing traffic flows require precise organization and constant control in the loading and maintenance areas. More and more machinery and engineering personnel are required. A logical solution to this problem is automation of processes, including autonomous driving functions delegating to service and transport vehicles. In modern aviation community, more and more attention is being paid to research and development of end-to-end automation processes with minimum human intervention — hyperautomation. Thus, this trend is one of the priorities of the strategy of scientific and technological development in the Russian Federation. The problems solving complexity in this area is being characterized by limited visual observation, which consists in the lack of opportunity for the crew to see the maneuvering equipment on the route of movement, and the lack of forbidden zones. Thus, this article considers the possibility of improving the traffic of service vehicles control system and aircraft on the territory of the aerodrome by placing collision avoidance equipment at the movement of service and maintenance vehicles, based on the lidar application and capabilities assessing of the method of employing sensors of incoming information on the parameters of the external environment.

Keywords:

aircraft, collision avoidance system, simulation

References

  1. Bachkalo B.I. Nauchnyi vestnik MGTU GA, 2015, no. 218, pp. 39-41.
  2. Koshkarov A.S., Semenova V.P. 14-aya obshcherossiiskaya molodezhnaya nauchno-tekhnicheskaya konferentsiya «Molodezh’. Tekhnika. Kosmos»: sbornik trudov, Saint-Petersburg, BGTU «Voenmekh» im. D.F. Ustinova, 2022, pp. 192-195.
  3. Knyazhskii A.Yu., Plyasovskikh A.P. Vestnik Kontserna VKO «Almaz — Antei», 2020, no. 3, pp. 96-106. DOI: 2542-0542-2020-3-96-106.
  4. Uil’yam Rain Klark. Novyi GANP i vzglyad v budushchee. URL: https://www.aviaport.ru/digest/2020/02/20/627387.html
  5. Li Y., Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems, IEEE Signal Process, 2020, no. 37, pp. 50–61. DOI: 10.1109/MSP.2020.2973615
  6. Badrloo S., Varshosaz M., Pirasteh S., Li J. Image-based obstacle detection methods for the safe navigation of unmanned vehicles: a review, Trends, Innovative Developments and Disruptive Applications in UAV Remote Sensing, 2022, no. 14, pp. 3824.
  7. Kamenskii K.V. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168186. DOI: 10.34759/trd-2022-125-14
  8. Shenyu M., Yan Chang, Wenshuo Wang and Ding Zhao. An Optimal LiDAR Configuration Approach for Self-Driving Cars, 2009.
  9. Avdeev V.A., Semenova V.P. Tret’ya Mezhdunarodnaya nauchnaya konferentsiya «Aerokosmicheskoe priborostroenie i ekspluatatsionnye tekhnologii»: sbornik dokladov. Saint Petersburg, GUAP, 2022, pp. 123-127. DOI: 10.31799/978-5-8088-1688-6-2022-3
  10. Zhitkov S.A., Ashurkov I.S., Zakharov I.N., Leshko N.A., Tsybul’nik A.N. Trudy MAI, 2019, no. 109. URL: https://trudymai.ru/eng/published.php?ID=111392. DOI: 10.34759/trd-2019-109-14
  11. Dolgov O.S., Safoklov B.B. Aerospace MAI Journal, 2022, no. 1, pp. 19-26. DOI: 10.34759/vst-2022-1-19-26
  12. Anodina T.G., Kuznetsov A.A., Markovich E.D. Avtomatizatsiya upravleniya vozdushnym dvizheniem (Automation of air traffic control), Moscow, Transport, 1992, 279 p.
  13. TractEasy Smart Airport Systems (SAS). URL: https://www.smart-airport-systems.com/solutions/tracteasy/
  14. Bopp V.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2022, no. 4, pp. 342-345.
  15. Santiago R., Ballesta-Garcia M. An Overview of Lidar Imaging Systems for Autonomous Vehicles, Applied Sciences, 2019, vol. 9(19), pp. 4093. DOI:10.3390/app9194093
  16. Kudryakov S.A., Kul’chitskii V.K., Ponomarev V.V. Radiotekhnicheskoe obespechenie poletov vozdushnykh sudov i aviatsionnaya elektrosvyaz’ (Radio technical support of aircraft flights and aviation telecommunications), Saint Petersburg, Svoe Izdatel’stvo, 2016, 287 p.
  17. Dembitskii N.L., Lutsenko A.V., Fam V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57879
  18. Garmash V.N., Korobochkin D.M., Matveev S.A., Petrov Yu.V., Rudyka S.A., Sukhov T.M. Voprosy radioelektroniki, 2018, no. 7, pp. 139-146.
  19. Semenov A.S., Yakushev I.A., Egorov A.N. Sovremennye naukoemkie tekhnologii, 2017, no. 8, pp. 56-64. DOI: 10.17513/snt.36780
  20. Martyakhin D.S., Kostsov A.V., Martyakhina N.V. Vestnik Moskovskogo informatsionno-tekhnologicheskogo universiteta — Moskovskogo arkhitekturno-stroitel’nogo instituta, 2019, no. 2, pp. 11-15.
  21. Evstifeev M.I., Eliseev D.P. Trudy MAI, 2017, no. 97. URL: https://trudymai.ru/eng/published.php?ID=87195

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход