Increasing the validity of selective control of the on-board system during the operation of space assets


Аuthors

Osipov N. A.*, Musienko A. S.**

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: bayes@mail.ru
**e-mail: vka@mil.ru

Abstract

The article describes a technique that combines a priori (additional) information and current monitoring data from testing space assets to achieve the goal of selecting and achieving a better assessment of the object.

The proposed method is based on the mathematical apparatus of dynamic Bayesian networks, as well as the basic concepts and connections of reliability theory and technical diagnostics of systems. The initial data is information about the spacecraft elements technical condition during test monitoring, information about reliability (structural and logical diagrams, component failure rates) of technological equipment, as well as linked models for diagnosing various types of technical condition and signs of diagnosing component faults.

The article proposed to use the selection method in a dynamic Bayesian network to identify inconsistencies between products and devices in the process of monitoring and technical condition diagnosing of the technological equipment components and describing the its process dynamics.

A posteriori inference allows combining heterogeneous initial information and newly received data to obtain a comprehensive assessment of the technological process and the state of the technological device, so that the expert may make an better decision on whether continuing or suspending the technological process, if errors are detected, and take measures to eliminate them.

The advantage of this technique is its ability to account for a priori heterogeneous information, especially the format of the subjects under test representation and the results of control experiments.

The article presents this method implementation for controlled studies on a limited sample collection. This capability is being demonstrated based on the results of random inspection tests, which estimate the expected cost of a defective product in the entire lot with sufficient objectivity to make random inspection decisions.

The method under consideration combines a priori information and data obtained from test results, which, when compared, allows achieving the necessary accuracy in identifying product defects.

The proposed method may be employed by the specialists when conducting system monitoring and testing activities to increase the efficiency of selection and defective products identification.

Keywords:

control tests, sampling plans, consumer risk, membership function, consolidated assessment

References

  1. Tarasov A.G., Milyaev I.K., Musienko A.S. Trudy MAI, 2023, no. 131. URL: https://trudymai.ru/eng/published.php?ID=175923. DOI: 10.34759/trd-2023-131-17

  2. Zakharova E.A., Baranovskii A.M. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2019, no. 669, pp. 124–132.

  3. Pavlov A.N., Umarov A.B., Kulakov A.Yu., Gordeev A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169004. DOI: 10.34759/trd-2022-126-18

  4. Kopkin E.V., Chikurov V.A., Aleinik V.V., Lazutin O.G. Trudy SPIIRAN, 2015, no. 4 (41), pp. 106–130.

  5. Osipov N.A., Musienko A.S., Merkushev O.A. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=90383

  6. Leonenkov A.V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH (Fuzzy modeling in MATLAB and fuzzyTECH), Saint Petersburg, BKhV Peterburg, 2005, 736 p.

  7. Pegat A. Nechetkoe modelirovanie i upravlenie (Fuzzy modeling and control), Moscow, Binom. Laboratoriya znanii, 2009, 798 p.

  8. Kofman A. Vvedenie v teoriyu nechetkikh mnozhestv (Introduction to the theory of fuzzy sets), Moscow, Nauka, 1982, 432 p.

  9. Khei Dzh. Vvedenie v metody baiesovskogo statisticheskogo vyvoda (Introduction to Bayesian statistical inference methods), Moscow, Finansy i statistika, 1987, 336 p.

  10. Kokhenderfer M., Uiler T., Rei K. Algoritmy prinyatiya reshenii (Decision-making algorithms), Moscow, DMK Press, 2023, 684 p.

  11. Flegontov A.V, Vilkov V.B., Chernykh A.K. Modelirovanie zadach prinyatiya reshenii pri nechetkikh iskhodnykh dannykh (Modeling of decision-making problems with fuzzy initial data), Saint Petersburg, Lan', 2020, 332 p.

  12. Solov'ev V.A., Lyubinskii V.E., Zhuk E.I. Pilotiruemye polety v kosmos, 2012, no. 2 (4), pp. 44-51.

  13. Storozhev S.A., Khizhnyakov Yu.N. Trudy MAI, 2021, no 118. URL: https://mai.ru/eng/publications/index.php?ID=158255. DOI: 10.34759/trd-2021-118-16

  14. Osipov N.A., Dorozhko I.V. Izvestiya vuzov. Priborostroenie, 2013, vol. 56, no. 1, pp. 18–26.

  15. Dorozhko I.V. Zakharova E.A., Osipov N.A. Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo, 2019, no. 669, pp. 216–223.

  16. Dorozhko I.V., Osipov N.A., Ivanov O.A. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118181. DOI: 10.34759/trd-2020-113-14

  17. Dorozhko I.V., Gorokhov G.M., Kirillov I.A. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168195. DOI: 10.34759/trd-2022-125-23

  18. Dorozhko I.V., Ivanov O.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158259. DOI: 10.34759/trd-2021-118-19

  19. Gusenitsa Ya.N., Dorozhko I.V., Kochanov I.A., Petukhov A.B. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90383
  20. Privalov A.E., Dorozhko I.V., Zakharova E.A., Kopeika A.L. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=101526


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход