Determining the spatial coordinates of an object from its position in two images taken from different angles


Аuthors

Nikiforov D. L.*, Rysenkov C. N.

Flight Research Institute, 2A, Garnaeva str., Zhukovsky, Moscow region, 140182, Russia

*e-mail: nikiforov-danil1997@yandex.ru

Abstract

This article considers the feasibility of determining the location of an object from a pair of images as an alternative to existing methods. The necessity for such an alternative is due to the widespread use of signal jammers and spoofers in European part of Russian Federation, which makes it impossible to use satellite navigation systems for conducting trajectory measurements. The purpose of this article is to propose, describe and experimentally prove a method that will allow conducting trajectory measurements in areas where satellite navigation is not available.The proposed method is based on the pinhole camera model. To use it, it is necessary to calibrate the cameras and eliminate image distortions. Geodetic referencing of two camera locations and two reference points that fall within the intersection of the fields of view of both cameras is required to bring both cameras to a common world coordinate system. Methods are described that allow one to estimate the angular error of camera calibration and the linear error of determining the location of an object. An experiment was conducted to validate the proposed method. The obtained results show that the method can be used when geodetic level of accuracy is not required. It is proposed to use this method as a basis for developing a complex for conducting trajectory measurements of moving targets based on a pair of recorded videos. Such a complex would significantly reduce the costs of trajectory measurements due to the use of components that are widely available both in price and range.

Keywords:

optical-electronic trajectory measurements, image triangulation, video triangulation, satellite navigation systems, pinhole camera model

References

  1. Ol'berg P.A. Akhtyamova I.M., Karaulova O.A., Proshechkina N.V. GPS-spoofing and ways to protect against it. VIII Mezhdunarodnaya nauchno-prakticheskaya ochno-zaochnaya konferentsiya «Problemy i perspektivy vnedreniya innovatsionnykh telekommunikatsionnykh tekhnologii» (Orenburg, March 2022). Orenburg: Povolzhskii gosudarstvennyi universitet telekommunikatsii i informatiki Publ., 2022. P. 130-138.
  2. Sentsov A.A. Korotkov V.A., Ivanov S.A., Turnetskaya E.L. Mathematical modeling of a free form inertial naigation system for airborne radar stations. Trudy MAI. 2023. No. 131. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=175926. DOI: 10.34759/trd-2023-131-20
  3. Jekeli C. Inertial navigation systems with geodetic applications. Walter de Gruyter GmbH & Co KG, 2023. 424 p.
  4. Britting K.R. Inertial navigation systems analysis. Wiley-Interscience, 2010. 249 p.
  5. Dodonov A.G., Putyatin V.G. Ground-based optical, optoelectronic and laser-television tools of trajectory measurements. Matematicheskie mashiny i sistemy. 2017. No. 4. P. 30-56. (In Russ.)
  6. Pototskii S.V. Mathematical formulation of the problem for a set of techniques for spatial-angular determination of the coordinates of test objects. 2-ya Vserossiiskaya nauchno-prakticheskaya konferentsiya "Problemy povysheniya effektivnosti nauchnoi raboty v oboronno-promyshlennom komplekse Rossii" (Znamensk, April 2019): sbornik trudov. Znamensk: Izdatel'skii dom «Astrakhanskii universitet» Publ., 2019. P. 91-97.
  7. Derevnin S.V. Rysenkov K.N., Voichenko O.S. ets. Implementation of the triangulation method using leveling by reference points on the territory of JSC "Gromov Flight Research Institute". XI Mezhdunarodnaya yubileinaya nauchno-tekhnicheskaya konferentsiya «Problemy sovershenstvovaniya robototekhnicheskikh i intellektual'nykh sistem letatel'nykh apparatov» (Moscow, December 2020): sbornik dokladov. Moscow: Editus Publ., 2021. P. 231-234.
  8. Rysenkov K.N., Voichenko O.S., Zobov I.S. ets. Sposob korrektsii uglov vizirovaniya na tochku. Patent RU 2758860 C1 (Method for correcting the angles of sight to a point. Patent RU 2758860 C1). opubl. 2021.11.02
  9. Zobov I.S., Rysenkov K.N., Voichenko O.S. ets. Leveling the measuring instrument using two reference points. XI Mezhdunarodnaya yubileinaya nauchno-tekhnicheskaya konferentsiya «Problemy sovershenstvovaniya robototekhnicheskikh i intellektual'nykh sistem letatel'nykh apparatov» (Moscow, December 2020): sbornik dokladov. Moscow: Editus Publ., 2021. P. 226-230.
  10. Fateev Yu.L. Tyapkin V.N., Dmitriev D.D. ets. Df method of measuring the angles of spatial orientation of gnss signals. Reshetnevskie chteniya. 2016. V. 1, No. 20. P. 304-306. (In Russ.)
  11. Spivak I.A., Khokhlov V.A., Komarov V.G. Directions for improving optical-electronic trajectory measurement tools. Nauchnye trudy Vysshei shkoly mashinostroeniya. Sbornik statei. Saint Petersburg: Politekh-Press Publ., 2022. P. 52-57.
  12. Kirichenko A.F. Modern non-tracking optical tools of trajectory measurements. Matritsa nauchnogo poznaniya. 2021. V. 1, No. 6. P. 96-101. (In Russ.)
  13. Mitrofanov I.V., Volotov E.M., Efimov N.A. Opredelenie traektornykh parametrov aviatsionnoi tekhniki, poluchennykh po materialam videoregistratsii (Determination of trajectory parameters of aircraft obtained from recorded video). Moscow: Izd-vo MAI, Publ., 2018. 68 p.
  14. Bugakov I.A., Vanyushin V.M., Orlovskii V.M. Algorithm of trajectory measurements by angle meters on mobile platforms. Radioelektronnye ustroistva i sistemy dlya infokommunikatsionnykh tekhnologii (REUS-IT 2023) (Moscow, June 2023). Moscow: Rossiiskoe nauchno-tekhnicheskoe obshchestvo radiotekhniki, elektroniki i svyazi im. A.S. Popova Publ., 2023. P. 109-113.
  15. Mitrofanov E.I., Volotov E.M., Efimov N.A., Mitrofanov I.V. A system for processing information from recorded video applicable to testing aircraft and weapons samples. Trudy Mezhdunarodnogo simpoziuma «Nadezhnost' i kachestvo». Penza: Penzenskii gosudarstvennyi universitet Publ., 2014. V. 2, P. 10-15.
  16. Hamid Didari, Hamid D. Taghirad, F. Lotfi. Position Estimation for Drones based on Visual SLAM and IMU in GPS-denied Environment. 2019 7th International Conference on Robotics and Mechatronics (ICRoM). Tehran, Iran: IEEE, 2019. P. 120-124. DOI: 10.1109/ICRoM48714.2019.9071826
  17. Hyunho Kang, Sangsu Lee, Choon Ki Ahn. Camera Position Estimation for UAVs Using SolvePnP with Kalman Filter. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). Shenzhen, China: IEEE, 2018. P. 250-251. DOI: 10.1109/HOTICN.2018.8606037
  18. Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. V. 22, No. 11. P. 1330-1334. DOI: 10.1109/34.888718
  19. OpenCV: Camera Calibration. URL: https://docs.opencv.org/5.x/dc/dbb/tutorial_py_calibration.html
  20. Sturm P. Pinhole Camera Model. Computer Vision: A Reference Guide / ed. K. Ikeuchi. Cham: Springer International Publishing, 2021. P. 983-986. DOI: 10.1007/978-0-387-31439-6_472
  21. Savage P.G. Strapdown analytics. Vol. 1. Maple Plain, Minnesota: Strapdown Associates, 2007. 836 p.
  22. Nikiforov D.L., Rysenkov K.N., Derevnin S.V., Zobov I.S. Programma vychisleniya zon ravnykh tochnostei dlya dvukhpunktnogo pelengatsionnogo sposoba izmerenii. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM RU 2023615670, (Program for calculating zones of equal accuracy for a two-point direction-finding method of measurements. Computer program registration certificate RU 2023615670), opubl. 16.03.2023.
  23. Ovakimyan D.N., Zelenskii V.A., Kapalin M.V., Ereskin I.S. Research of methods and development of algorithms for integration of navigation information. Trudy MAI. 2023. No. 132. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=176849
  24. Korovin A.V., Savin D.I. Тhe method for determining the coordinates of ground objects by an unmanned aerial vehicle using a laser rangefinder. Trudy MAI. 2023. No. 128. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=171398. DOI: 10.34759/trd-2023-128-14
  25. Chernikov A.A. Algorithm for detecting and classification of objects on a unhomogeneous background for optoelectronic systems. Trudy MAI. 2023. No.129. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=173039. DOI: 10.34759/trd-2023-129-26


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход