Increasing the speed of determining the source of messages by limiting the set of processed data blocks


DOI: 10.34759/trd-2022-125-20

Аuthors

Tanygin M. O.*, Chesnokova A. A.**, Ahmad A. A.***

South-Western State University, 94, 50-let Oktyabrya str., Kursk, 305040, Russia

*e-mail: tanygin@yandex.ru
**e-mail: chesnokova.50@yandex.ru
***e-mail: aliayid2013@gmail.com

Abstract

The purpose of the study consists in developing a mathematical model, which allows evaluating the computational complexity of the original method of i the messages source identifying, which is based on forming the groups of messages and checking the condition of belonging to the target source for the entire group. An increase in reliability and decrease in computational complexity in the method under study is being achieved by assuming that the sequence of messages from the source to the receiver is maintained. This allows cutting down the number of messages involved in the group forming, and, accordingly, reduces the number of options for such groups’ formation.

To study the computational complexity of the algorithm for the groups of messages forming, the number of elementary operations for comparing hashes of such messages was studied, i.e. of the basic operation determining membership of a particular message to the structured set being formed. The length of the message hash, the number of interacting subjects of the distributed system, a number of messages in the group, as well as the parameter limiting the set of messages being analyzed, were the parameters of the model. The process of messages receipt to the receiver was represented as a linear dynamic process characterized in each discrete time instant by the probabilities of a certain number of messages receipt from the target source and all other sources of the distributed system.

The results obtained with this model allow asserting that the condition of warranty of the messages sequence, received by the device, does not change complexity of the message source detection. It stays linearly dependent on the length of the group of messages and a number of devices interacting in the framework of the system of devices. At the same time, in absolute numbers, the number of comparison operations is reduced by two orders of magnitude compared to the group forming method, which does not employ the stationary property of information flows between the distributed system components.

Keywords:

small spacecraft, cluster of small spacecraft, ballistic structure, spatial configuration

References

  1. Volkov A.S., Solodkov A.V., Suslova K.O., Strel'nikov A.P. Trudy MAI, 2021, no. 119. https://trudymai.ru/eng/published.php?ID=159789. DOI: 10.34759/trd-2021-119-11
  2. Borzov D.B., Dyubryuks S.A., Sokolova Yu.V. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118998. DOI: 10.34759/trd-2020-114-13
  3. Spevakov A.G., Kalutskii I.V. Trudy MAI, 2020, no. 115. URL: https://trudymai.ru/eng/published.php?ID=119939. DOI: 10.34759/trd-2020-115-13
  4. Predvaritel'nyi natsional'nyi standart RF. Informatsionnye tekhnologii. Internet veshchei. Protokol obmena dlya vysokoemkikh setei s bol'shim radiusom deistviya i nizkim energopotrebleniem. URL: https://drive.google.com/uc?id=12kPw5_ndO8zav7_BP_EXKdytu7uEyy3x&export=download
  5. 802.15.4-2015 – IEEE Standard for Low-Rate Wireless Personal Area Networks, IEEE Computer Society. DOI:10.1109/ieeestd.2016.7460875.
  6. Krivchenko T. Elektronnye komponenty, 2006, no. 2.
  7. Chung-Hua Chu, Yen-Chieh Ouyang and Chang-Bu Jang Secure data transmission with cloud computing in heterogeneous wireless networks, Security and Communication Networks, 2012, vol. 5, issue 12, pp. 1325–1336.
  8. Panagiotis Papadimitratos, Zygmunt J. Haas Secure message transmission in mobile ad hoc networks, Ad Hoc Networks, 2003, no. 1, pp. 193–209. DOI:10.1145/941311.941318
  9. Shant D., Premkumar P. Block Level Data Integrity Assurance Using Matrix Dialing Method towards High Performance Data Security on Cloud Storage, Circuits and System, 2016, vol. 7, no. 11, pp. 3626-3644. DOI:10.4236/cs.2016.711307
  10. Bukharin V.V., Dvoryadkin V.V., Pikalov E.D. et al. Patent RU 2547628 S2, 10.04.2015.
  11. Gorokhov A. Kkhandekar Aamod, Borran Mokhammad D., Prakash Radzhat. Patent RU 2419219 C2, 20.05.2011.
  12. Gavrishev A.A., Zhuk A.P. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informatsionnye tekhnologii, 2019, vol. 17, no. 1, pp. 18-27. DOI: 10.25205/1818-7900-2019-17-1-18-27
  13. Shi X., Xiao D. A reversible watermarking authentication scheme for wireless sensor networks, Information Sciences, 2013, vol. 240, pp. 173-183. DOI: 10.1016/j.ins.2013.03.031
  14. Ben Othman S., Alzaid H., Trad A., Youssef H. An efficient secure data aggregation scheme for wireless sensor networks, Conference: Information, Intelligence, Systems and Applications, IISA 2013. DOI:10.1109/iisa.2013.6623701
  15. Bhattacharjee Arghya, Lopez C.M., List E., Nandi M. The Orbatida v1.3 Family of Lightweight Authenticated Encryption Schemes, Journal of Mathematical Cryptology, 2021, no. 15(1), pp. 305-344. DOI: 10.1515/jmc-2020-0018
  16. Tanygin M.O., Dobroserdov O.G., Vlasova A.O., Akhmad A.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158253. DOI: 10.34759/trd-2021-118-14
  17. Tanygin M.O. Alshaia Kh.Ya., Mitrofanov A.V. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156256. DOI: 10.34759/trd-2021-117-12
  18. Tanygin M.O. Teoreticheskie osnovy identifikatsii istochnikov informatsii, peredavaemoi blokami ogranichennogo razmera (Theoretical foundations of identification of information sources transmitted by blocks of limited size), Kursk, Universitetskaya kniga, 2020, 198 p.
  19. Tanygin M.O., Ali Ayid Ahmad, Dobritsa V.P., Huseyin Polat, Ahmad Ayid Ahmad. Reliability Improvement of Communication Channels Between the Components of Distributed Information Systems, Webology, 2022, vol. 19, no. 2, pp. 5230-5240. DOI 10.34759/trd-2021-117-12
  20. Liberg Olof, Sundberg Marten, Wang Eric et al. Cellular Internet of Things: Technologies, Standards, and Performance. Academic Press, 2017
  21. Cellular System Support for Ultra-Low Complexity and Low Throughput Internet of Things: technical report 45.820 v 13.0.0: 3GPP, 2016. URL: https://itectec.com/archive/3gpp-specification-tr-45-820/
  22. Pham Congduc. Investigating and Experimenting CSMA Channel Access Mechanisms for LoRa IoT Networks, 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018. URL: https://doi.org/10.1109/wcnc.2018.8376997
  23. Bista R., Jo K., Chang J. A New Approach to Secure Aggregation of Private Data in Wireless Sensor Networks, IEEE International Conference on Dependable, Autonomic and Secure Computing, 2009, pp. 394-399. DOI:10.1109/CIT.2010.79
  24. Vikas Kaul V.A., Bharadi P., Dhvani Shah, Narayankhedkar S.K. Security Enhancement for Data Transmission in 3G/4G Networks, International Conference on Computing Communication Control and Automation Pune, India, 2015, pp. 95 - 102. DOI:10.1109/ICCUBEA.2015.25

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход