Method for assessing the accuracy of the alignment of onboard radar systems of aircraft


DOI: 10.34759/trd-2022-127-16

Аuthors

Glushkov A. N.1*, Moiseev S. N.1**, Ispulov A. A.1***, Filippov A. V.1****, Nikolaev S. V.2*****

1. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
2. 929th State flight-test center of the defence Ministry named after V.P. Chkalov, Akhtubinsk, Astrakhan region, 416500, Russia

*e-mail: angl243@yandex.ru
**e-mail: sergeimoiseev007@yandex.ru
***e-mail: ispulovy@yandex.ru
****e-mail: sholts290@rambler.ru
*****e-mail: nikozavr@mail.ru

Abstract

The presented article proposes a method for the errors operational evaluation in the alignment of radar and optoelectronic stations applied in navigation and weapon-aiming aircraft complexes. Its actuality is associated with the fact that the alignment accuracy of the location systems determines potential effectiveness of the aviation complexes, since the alignment errors cause the need to increase the location systems fields of vision and, as the result, lead to the aircraft in the potential efficiency decrease. These errors minimization will allow narrowing their fields of vision, while preserving radars search capabilities, and enhancing detecting capability and spatial resolution of optoelectronic systems by the integral background illumination reduction. As the result, both detection range and the probability of objects recognizing will be enhanced. The currently developed methods for the alignment errors evaluating do not allow performing operational correction of the of directional patterns relative position of the onboard location systems of navigation and weapon-aiming complexes in real operating conditions, which requires new evaluation methods development. Natural requirements for these methods are the possibility of obtaining evaluations in real time or close to it, as well as the possibility of employing these evaluations for correcting relative location of the radars fields of view. Evaluation methods developed as of today do not meet these requirements, which stresses the relevance of the problem being solved. The problem of errors evaluation in the alignment of the onboard location systems is set and solved as a filtration problem, since in general case the object of the study is non-stationary. The authors developed an algorithm for mathematical formalization of the alignment errors behavior during the flight of an aircraft, allowing performing correction of the directional diagrams position of location systems in real time based on the values of their evaluation. Model experiments were conducted to confirm correctness of the developed solutions.

Keywords:

aircraft, location, radar station, alignment

References

  1. Pershin N.A. Otsenka effektivnosti aviatsionnykh kompleksov razlichnykh tipov (Evaluation of the effectiveness of aviation complexes of various types), Irkutsk, IVAII, 2005, 84 p.
  2. Lebedev L.A., Fedorov V.V. Vserossiiskaya nauchno-prakticheskaya konferentsiya «Problemy ekspluatatsii aviatsionnoi tekhniki v sovremennykh usloviyakh»: sbornik statei, Lyubertsy, NITs TsNII VVS MO RF, 2018, pp. 88-93.
  3. Krasnov A.M. Aviatsionnye pritsel’nye sistemy (Aviation sighting systems), Moscow, VVIA im. N.E. Zhukovskogo, 2006, 523 p.
  4. Maizel’s E.N., Torgovanov V.A. Izmerenie kharakteristik rasseyaniya radiolokatsionnykh tselei (Measurement of scattering characteristics of radar targets), Moscow, Sovetskoe radio, 1991, 232 p.
  5. Babich O.A. Obrabotka informatsii v navigatsionnykh kompleksakh (Information processing in navigation systems), Moscow, Mashinostroenie, 1991, 234 p.
  6. Moiseev S.N., Potapov A.N. XXXX Voenno-nauchnaya konferentsiya NITs TsNII VVKO Minoborony Rossii: nauchno-metodicheskii sbornik, Tver’, NITs TsNII VVKO Minoborony Rossii, 2014, pp. 109-118.
  7. Kamenskii K.V. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168186. DOI: 10.34759/trd-2022-125-14
  8. Moiseev S.N., Potapov A.N. Vserossiiskaya nauchno—prakticheskaya konferentsiya kursantov, slushatelei, molodykh uchenykh, posvyashchennaja Dnyu obrazovaniya voisk svyazi: sbornik statei, Voronezh, VUNTs VVS «VVA im. professora N.E. Zhukovskogo i Yu.A. Gagarina», 2013, pp. 246-251.
  9. Krasnov A.M. Osnovy analiza aviatsionnykh pritsel’no-navigatsionnykh system (Fundamentals of analysis of aviation sighting and navigation systems), Moscow, VVIA im. professora N.E. Zhukovskogo, 2009, 318 p.
  10. Lukin V.N., Chechikov Yu.B., Sekretarev V.E., Dzyubenko A.L., Altukhova N.F. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165573. DOI: 10.34759/trd-2022-123-21
  11. Artem’ev V.M., Naumov A.O., Kokhan A.O. Obrabotka izobrazhenii v passivnykh obzorno-poiskovykh optiko-elektronnykh sistemakh (Image processing in passive surveillance and search optoelectronic systems), Minsk, Belorusskaya nauka, 2014, 116 c.
  12. Zinger R. Zarubezhnaya elektronika, 1971, no. 8, pp. 40-57.
  13. Letfullin I.R. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167069. DOI: 10.34759/trd-2022-124-14
  14. Leonov S.A. Osnovy teorii tochnosti radiolokatsionnykh izmerenii podvizhnykh ob"ektov (Fundamentals of the theory of accuracy of radar measurements of moving objects), Leningrad, Sudostroenie, 1991, 167 p.
  15. Gerasimov I.V., Kirpichnikov A.S., Moiseev S.N., Oleshko V.S., Potapov A.N., Tkachenko D.P. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 23, pp. 235-241.
  16. Moiseev S.N. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167071. DOI: 10.34759/trd-2022-124-16
  17. Kanashchenkov A.I., Merkulov V.I. Aviatsionnye sistemy radioupravleniya. Vol. 1. Printsipy postroeniya sistem radioupravleniya. Osnovy sinteza i analiza (Aircraft radio control systems. Vol. 1. Principles of building radio control systems. Fundamentals of synthesis and analysis), Moscow, Radiotekhnika, 2003, 192 p.
  18. Venttsel’ E.S. Teoriya veroyatnostei (Probability theory), Moscow, Vysshaya shkola, 1999, pp. 351–356.
  19. Anan’ev A.V., Ivannikov K.S., Kazhanov A.P. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165564. DOI: 10.34759/trd-2022-123-18
  20. Bar-Shalom Ya., Li H.-R. Traektornaya obrabotka. Printsipy, sposoby i algoritmy (Trajectory processing. Principles, methods and algorithms), Moscow, MGTU im. N.E. Baumana, 2011, Part. 1, 271 p.
  21. Demin D.S., Kononenko P.I., Lebedenko V.I., Prilutskii A.A., Reznichenko V.I., Sidorchuk E.A., Sysoev V.K., Khmel’ D.S. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159790. DOI: 10.34759/trd-2021-119-12
  22. Moiseev S.N., Filippov A.V., Lebedev V.V., Glushkov A.N., Meshcheryakov A.V., Borovkov A.A., Moiseev P.A. Patent RU 2757679, 20.10.2021.
  23. Gavrilov K.Yu., Kamenskii K.V., Malyutina O.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158252. DOI: 10.34759/trd-2021-118-12
  24. Kartukov A.V., Merkishin G.V., Nazarov A.N., Egorov V.V. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/published.php?ID=116371. DOI:10.34759/TRD-2020-112-12

  25. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход