Assessment of the complexity level of the signal environment for the use of a multichannel sub-Nyquist receiver


DOI: 10.34759/trd-2023-129-18

Аuthors

Podstrigaev A. S.

Saint Petersburg Electrotechnical University “LETI”, 5, str. Professora Popova, Saint Petersburg, 197376, Russia

e-mail: ap0d@ya.ru

Abstract

The modern cognitive radio systems and the spectrum monitoring devices used in spectrum management must perform wideband signal analysis. One of the ways to achieve a wide instantaneous analysis band is to use a multichannel sub-Nyquist receiver. Such a device receives signals from the many Nyquist zones and analyzes their aliases in the first zone. It can disambiguate frequency measurements by aggregating information from several independent channels having different sampling frequencies.

Previously, the author studied errors in determining the time-frequency parameters of pulses time-overlapped in the sub-Nyquist receiver prototype. These studies have shown that this receiver can be used in a complex signal environment. At the same time, the assessment of the maximum level of the signal environment complexity, at which it is possible to use a sub-Nyquist receiver, has yet to be previously performed. This estimation is carried out in the present work by determining the number of pulses simultaneously processed with a given quality.

As a quality criterion, we assume the probability of correct classification should be no worse than 0.8. For this, the abnormal error probability in determining the time-frequency parameters of the pulse should be no more than 0.1. A numerical experiment showed that this condition is satisfied when the number of pulses overlapped in time is not more than 4...5 (depending on the parameters of the receiver).

The calculation shows the possibility of transmitting a stream of pulse descriptor words over the 10GE interface, assuming that five pulse descriptor words are formed in each analysis window (the worst situation). The bandwidth of the transmission channel is more than six times.

In accordance with the previously considered classification of the signal environment, the receiver under study can be used in a signal environment of the third level of complexity and lower.

The results can be used to substantiate the composition of wideband analysis tools depending on the expected complexity level, select the parameters of a multichannel sub-Nyquist receiver, and predict the appearance of abnormal errors in determining the time-frequency parameters of pulses in the receiver.

Keywords:

sub-Nyquist receiver, undersampling receiver, undersampling, wideband receiver, digital receiver, time-frequency parameters, software-defined radio, software-defined receiver, 10 Gigabit Ethernet, pulse descriptor word

References

  1. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Programmno-opredelyaemye sredstva shirokopolosnogo analiza signalov na osnove tekhnologii subdiskretizatsii (Software-defined tools for broadband signal analysis based on undersampling technology), Saint Petersburg, Izd-vo SPbGETU «LETI», 2021, 184 p.
  2. Korotkov V.F., Zyryanov R.S. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2017, no. 3, pp. 5-10. URL: https://re.eltech.ru/jour/article/view/169
  3. Bogdanov S.A., Kupriyanov P.V., Nikolaev S.V., Petrov S.A. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2018, no. 3, pp. 85-90. URL: https://doi.org/10.32603/1993-8985-2018-21-3-85-90
  4. Podstrigaev A.S. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatatsii radiotekhnicheskikh system, 2016, no. 1 (10), pp. 49-52.
  5. Dvornikov S.V., Konyukhovskii V.S., Simonov A.N. Informatsionno-upravlyayushchie sistemy, 2020, no. 1, pp. 63-72. DOI: 10.31799/1684-8853-2020-1-63-72.
  6. Dvornikov S.V., Dvornikov S.S., Zheglov K.D. T-Comm: Telekommunikatsii i transport, 2022, vol. 16, no. 11, pp. 15-20. DOI: 10.36724/2072-8735-2022-16-11-15-20.
  7. Sviatkina V., Kuptsov V., Davydov V., Rud V. On possibility of using of spectral analysis for control the energy distribution of electromagnetic waves in radar channels, Proceedings of ITNT 2020 — 6th IEEE International Conference on Information Technology and Nanotechnology, Virtual, Samara, 2020, pp. 9253166. DOI: 10.1109/ITNT49337.2020.9253166.
  8. Podstrigaev A.S., Smolyakov A.V., Maslov I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity, Journal of the Russian Universities Radioelectronics, 2020, no. 23 (5), pp. 37-45. DOI: 10.32603/1993-8985-2020-23-5-37-45.
  9. Makarenko S.I., Novikov E.A., Mikhailov R.L. Zhurnal radioelektroniki, 2014, no. 10 URL: http://jre.cplire.ru/jre/oct14/3/text.html.
  10. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Radiotekhnika, 2022, vol. 86, no. 1, pp. 143−153. DOI: 10.18127/j00338486-202201-19.
  11. Kupryashkin I.F., Sokolik N.V. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2019, mo. 1, pp. 39 — 55. URL: https://doi.org/10.32603/1993-8985-2019-22-1-39-47.
  12. Vorob’ev E.N., Verem’ev V.I., Kholodnyak D.V. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2018, no. 6, pp. 75 — 82. https://doi.org/10.32603/1993-8985-2018-21-6-75-82.
  13. Kupryashkin I.F., Likhachev V.P., Ryazantsev L.B. Malogabaritnye mnogofunktsional’nye RLS s nepreryvnym chastotno-modulirovannym izlucheniem (Small-sized multifunctional radar with continuous frequency-modulated radiation), Moscow, Radiotekhnika, 2020, 280 p.
  14. Biyusova V.A., Kochetov A.V., Komarov G.V., Panfilov P.S., Parusov V.A. Voprosy radioelektroniki, 2019, no. 9, pp. 26-30. DOI: 10.21778/2218-5453-2019-9-26-30.
  15. Asadullin R.N. et al. Radiotekhnika, 2019, vol. 83, no. 6 (7), pp. 6-11. DOI: 10.18127/j00338486-201906(7)-02.
  16. Nogov O.A. Trudy MAI, 2013, no. 66. URL: http://trudymai.ru/eng/published.php?ID=40269.
  17. Kazak P.G., Shevtsov V.A. Trudy MAI, 2021, no. 118. URL: http://trudymai.ru/eng/published.php?ID=158239. DOI: 10.34759/trd-2021-118-06
  18. Bakhtin A.A., Volkov A.S., Solodkov A.V., Baskakov A.E. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=122307. DOI: 10.34759/trd-2021-117-07.
  19. Dvornikov S.V., Dvornikov S.S., Manaenko S.S., Pshenichnikov A.V. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, vol. 12, no. 2, pp. 87-93.
  20. Ivanutkin A.G., Danilin M.A., Presnyakov M.Yu. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=67818.
  21. Axell E., Leus G., Larsson E., Poor H. Spectrum Sensing for Cognitive Radio: State-of-the-Art and Recent Advances, IEEE Signal Processing Magazine, 2012, no. 29 (3), pp. 101-116. DOI:10.1109/msp.2012.2183771.
  22. Aswathy G.P., Gopakumar K. Sub-Nyquist wideband spectrum sensing techniques for cognitive radio: A review and proposed techniques, AEU-International Journal of Electronics and Communications, 2019, vol. 104, pp. 44-57. URL: https://doi.org/10.1016/j.aeue.2019.03.004.
  23. Bakhtin A.A., Volkov A.S., Solodkov A.V., Sviridov I.A. Trudy MAI, 2021, no. 121. URL: http://trudymai.ru/eng/published.php?ID=162660. DOI: 10.34759/trd-2021-121-13.
  24. Ma Y., Gao Y., Liang Y. C., Cui S. Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks, IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 10, pp. 2750-2762. DOI: 10.1109/JSAC.2016.2605998.
  25. Kizima S.V. Elektrosvyaz’, 2018, no. 11, pp. 68-74. URL: https://radian-m.ru/docs/article/2018ESV11.pdf.
  26. Aldokhina V.N., Dem’yanov A.V., Gudaev R.A., Byk V.S., Vikulova Yu.M. Trudy MAI, 2017, no. 93. URL: http://trudymai.ru/eng/published.php?ID=80373.
  27. Likhachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. XVI Mezhdunarodnaya nauchno-metodicheskaya konferentsiya «Informatika: problemy, metodologiya, tekhnologii»: sbornik trudov. Voronezh, Izd-vo Nauchno-issledovatel’skie publikatsii, 2016, pp. 179-184.
  28. Masalkin A.A., Kolesnik A.V., Protsenko P.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105700.
  29. Rashidi M., Haghighi K., Owrang A., Viberg M. A wideband spectrum sensing method for cognitive radio using sub-Nyquist sampling, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), IEEE, 2011, pp. 30-35. DOI: 10.1109/DSP-SPE.2011.5739182.
  30. Sanderson R.B., Tsui J.B.Y. Digital frequency measurement receiver with bandwidth improvement through multiple sampling of real signals. Patent US 5099194 A, 24.03.1992.
  31. Sanderson R.B., Tsui J.B.Y. Digital frequency measurement receiver with bandwidth improvement through multiple sampling of complex signals. Patent US 5099243, 24.03.1992.
  32. Sanderson R.B., Tsui J.B.Y. Instantaneous frequency measurement receiver with bandwidth improvement through phase shifted sampling of real signals. Patent US 5109188, 28.04.1992.
  33. McCormick W.S., Tsui J.B.Y. Frequency measurement receiver with means to resolve an ambiguity in multiple frequency estimation. Patent US 5293114, 08.03.1994.
  34. Beharrell G.P. Digital electronic support measures. Patent EP 1618407, 17.04.2013.
  35. Krenev A.N., Botov V.A., Goryuntsov I.S., Pogrebnoi D.S., Toporkov V.K. Patent na izobretenie RU 2516763, 20.05.2014.
  36. Podstrigaev A.S. Radiotekhnika i elektronika, 2022, vol. 67, no. 4, pp. 369-376. DOI: 10.31857/S0033849422040131.
  37. Podstrigaev A.S. Zhurnal Sibirskogo federal’nogo universiteta. Tekhnika i tekhnologii, 2022, no. 15 (2), pp. 223-237. DOI: 10.17516/1999-494X-0385. URL: https://elib.sfu-kras.ru/handle/2311/145437.
  38. Kupriyanov A.I. Voprosy radioelektroniki, 2012, vol. 2, no. 2, pp. 5-11.
  39. Podstrigaev A.S. T-Comm: Telekommunikatsii i transport, 2021, vol. 15, no. 10, pp. 11-17. DOI: 10.36724/2072-8735-2021-15-10-11-17. URL: http://media-publisher.ru/wp-content/uploads/Nom-10-2021-s.pdf.
  40. Smolyakov A.V., Podstrigaev A.S. Radiotekhnika, 2021, vol. 85, no. 9, pp. 95-107. DOI: 10.18127/j00338486-202109-09.
  41. Smolyakov A.V., Podstrigaev A.S. Trudy MAI, 2021, no. 121. URL: http://trudymai.ru/eng/published.php?ID=162661. DOI: 10.34759/trd-2021-121-14.
  42. Podstrigaev A.S., Smolyakov A.V. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165560. DOI: 10.34759/trd-2022-123-15.
  43. Gorbunova A.A. Trudy MAI, 2011, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25366.
  44. Kazachkov E.A., Matyugin S.N., Popov I.V., Sharonov V.V. Vestnik Kontserna VKO «Almaz — Antei», 2018, no. 1, pp. 93-99. DOI: 10.38013/2542-0542-2018-1-93-99. URL: http://journal.almaz-antey.ru/jour/article/view/51.
  45. Adzhemov S.S., Tereshonok M.V., Chirov D.S. T-Comm-Telekommunikatsii i Transport, 2012, no. 9, pp. 9-12.
  46. Chirov D.S. Stetsyuk A.N. Fundamental’nye problemy radioelektronnogo priborostroeniya, 2017, vol. 17, no. 4, pp. 950-953.
  47. Radzievskii V.G., Sirota A.A. Informatsionnoe obespechenie radioelektronnykh sredstv v usloviyakh konflikta (Information support of radio-electronic means in conflict conditions), Moscow, IPRZhR, 2001, 456 p.
  48. Ge Z., Sun X., Ren W., Chen W., Xu G. Improved algorithm of radar pulse repetition interval deinterleaving based on pulse correlation, IEEE Access, 2019, vol. 7, pp. 30126-30134. DOI:10.1109/ACCESS.2019.2901013

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход