Application of the finite-difference time-domain method to the analysis of the directional properties of two-dimensional radiating structures


Аuthors

Ovchinnikova E. V.1*, Shmachilin P. A.1**, Kondrat’eva S. G.1***, Gadzhiev E. V.1, 2****, Pavlov S. V.3*****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Corporation "Space systems monitoring, information management and electromechanical systems" named A.G. Iosif'yan, "Corporation "VNIIEM", 4, Horomny deadlock, building 1, Moscow, 107078, Russia
3. S. P. Korolev Rocket and Space Corporation «Energia», 4A Lenin Street, Korolev, Moscow area, 141070, Russia

*e-mail: oea8888@gmail.com
**e-mail: shmachilin@gmail.com
***e-mail: kondratieff89@ya.ru
****e-mail: gadzhiev_elchin@mail.ru
*****e-mail: pav00.00@mail.ru

Abstract

The subject of the research is the finite difference time domain method with an algorithm for recalculating the near-zone field into the far-zone field. The Finite-Difference Time-Domain (FDTD) method is a numerical method used for the numerical modeling of electromagnetic fields. It is based on finite difference approximations of Maxwell’s equations, which describe the behavior of electromagnetic fields in space and time. The aim of the work is to implement the FDTD method with boundary conditions in software and the ability to calculate the directional properties of two-dimensional radiating structures. The program is aimed at making its contribution to the field of computational electromagnetics and its practical applications by providing users with a universal and accessible tool for analyzing the phenomena of wave propagation, reflection, transmission, and scattering in two-dimensional space and calculating the radiation patterns of various structures. During the work, the following tasks were carried out: implementation of boundary conditions, development of a method for calculating the reflection coefficient from boundary conditions, software implementation of the finite difference time domain (FDTD) method, development of an algorithm for recalculating the near-field into the far-field, modeling and calculation of radiation patterns of various antennas. As a result of the research, the FDTD method was implemented with the possibility of calculating the radiation pattern of radiating structures. The developed program has a wide range of potential applications. It can be used to analyze the behavior of waveguides and transmission lines, to design and optimize antennas, to calculate the radiation pattern of antennas, and to serve as a teaching aid for students and researchers in the field of electromagnetism.

Keywords:

Numerical methods, electrodynamic modeling, electrodynamics, FDTD, Python

References

  1. Gadzhiev E.V. Antenny, 2013, no. 9 (196), pp. 065-068.
  2. Ovchinnikova E.V., Shmachilin P.A., Kondrat'eva S.G., Gadzhiev E.V. Elektrosvyaz', 2016, no. 7, pp. 56-59.
  3. Chistyakov V.A. Trudy MAI, 2020, no. 115. URL: https://trudymai.ru/eng/published.php?ID=119921. DOI: 10.34759/trd-2020-115-07
  4. Azarov A.V., Karavaev M.N., Rozhkov S.S., Slavyanskii A.O., Smolka K.A. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165549. DOI: 10.34759/trd-2022-123-12
  5. Korol' D.G., Temchenko V.S. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173026. DOI: 10.34759/trd-2023-129-14
  6. Kozlov K.V., Volkov A.P., Starovoitov E.I., Popov E.V. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164200. DOI: 10.34759/trd-2022-122-11
  7. Ovchinnikova E.V., Shmachilin P.A., Kondrat'eva S.G., Gadzhiev E.V., Pavlov S.V., Chekulov V.R. Voprosy elektromekhaniki. Trudy VNIIEM, 2024, vol. 198, no. 1, pp. 39-46.
  8. Pavlov S.V., Chekulov V.R. 50-ya Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «Gagarinskie chteniya – 2024»: tezisy dokladov, Moscow, Izdatel'stvo «Pero», 2024, pp. 357.
  9. Ovchinnikova E.V., Shmachilin P.A., Kondrat'eva S.G., Gadzhiev E.V., Pavlov S.V., Chekulov V.R. Voprosy elektromekhaniki. Trudy VNIIEM, 2024, vol. 198, no. 1, pp. 17-25.
  10. Grinev A.Yu., Gigolo A.I. Matematicheskie osnovy i metody resheniya zadach elektrodinamiki (Mathematical Basics and Solution Methods of Electrodynamic Problems), Moscow, Radiotekhnika, 2015, 126 p.
  11. Electronic Source. URL: https://www.kaggle.com/code/shmachilin/fdtd-2d
  12. John B. Schneider. Understanding the Finite-Difference Time-Domain Method. URL: file:///C:/Users/lenovo/Downloads/ufdtd(1).pdf
  13. GitHub - Jenyay/modelling. URL: https://github.com/Jenyay/modelling/tree/master14
  14. Gadzhiev E.V., Ovchinnikova E.V., Shmachilin P.A. XLII Mezhdunarodnaya nauchnaya molodezhnaya konferentsiya «Gagarinskie chteniya – 2016»: tezisy dokladov. Moscow, Izd-vo MAI, 2016, pp. 509-510.
  15. Gadzhiev E.V., Kondrat'eva S.G., Ovchinnikova E.V. XLII Mezhdunarodnaya nauchnaya molodezhnaya konferentsiya «Gagarinskie chteniya – 2016»: tezisy dokladov. Moscow, Izd-vo MAI, 2016, pp. 499-500.
  16. Kane Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 1966, vol. 14, pp. 302-307. DOI: 10.1109/tap.1966.1138693
  17. Jean-Pierre Beranger. Perfectly Matched Layer for the FDTD Solution of Wave-Structure Interaction Problems, IEEE Transactions on Antennas and Propagation, 1996, vol. 44, issue 1, pp. 110-117.
  18. Voskresenskii D.I., Gostyukhin V.L., Maksimov V.M., Ponomarev L.I. Ustroistva SVCh i antenny (Microwave Devices and Antennas), Moscow, Radiotekhnika, 2016, 560 p.
  19. Gavrilov K.Yu., Kamenskii K.V., Malyutina O.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158252. DOI: 10.34759/trd-2021-118-12
  20. Shamakina A.V. Vestnik yuzhno-ural'skogo gosudarstvennogo universiteta. Seriya: vychislitel'naya matematika i informatika, 2014, no. 3, pp. 51–85.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход