Development of an optimal algorithm for processing radio signals of radio emission sources by aviation radio surveillance tool


DOI: 10.34759/trd-2023-129-13

Аuthors

Biryukov I. D.

Central Scientific Research Radiotechnical Institute name of the academician A.I. Berg, 20, Novaya Basmannaya, 105066, Russia

e-mail: ivan-birs@yandex.ru

Abstract

This paper presents the process of developing an optimal algorithm for processing radio signals from sources of radio emission by an aviation system of radio technical surveillance.

The main tasks of radio signal processing, which are solved by aviation means of radio technical surveillance, are described. The interdependence of the decisions made in the detection, resolution, estimation of parameters and recognition of radio signals from sources of radio emission is shown. An analysis of the factors that reduce the effectiveness of radio surveillance equipment is carried out, and ways to improve it are proposed. For the case when the source of radio emission belongs to the a priori type library, the procedure for performing processing tasks is substantiated. The loss function is defined, which describes the process of processing information about the received radio signals and provides the interconnection of the decisions made. Based on Bayesian synthesis, an algorithm has been developed in which the problem of a priori uncertainty is solved by changing the sequence of performing radio signal processing procedures. A block diagram of the developed algorithm is presented. The feasibility of the developed algorithm is assessed.

The relevance of the work on the development of an algorithm for processing radio signals in aviation system of radio surveillance is due to the complexity of the modern electronic environment, the increasing importance of objects containing radio emission sources, and the need for effective countermeasures.

The joint optimal algorithm provides the lowest total Bayesian risk, but is not feasible due to high computational costs. Therefore, it is required to make a transition to a joint quasi-optimal algorithm.

Keywords:

radio technical observation, information processing, parameter estimation, resolution, detection, recognition, Bayesian synthesis

References

  1. Biryukov I.D. XV Vserossiiskaya konferentsiya «Radiolokatsiya i radiosvyaz’»: sbornik trudov. Moscow, IRE im. V.A. Kotel’nikova RAN, 2022, pp. 54-59.
  2. Rembovskii A.M. Radiomonitoring: zadachi, metody i sredstva (Radio monitoring), Moscow, Goryachaya linyaya-Telekom, 2006, 492 p.
  3. Azarov A.V., Karavaev M.N., Rozhkov S.S. et al. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165549. DOI 10.34759/trd-2022-123-12
  4. Bel’skii A.B. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165561. DOI 10.34759/trd-2022-123-16
  5. Anan’ev A.V., Ivannikov K.S. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164268. DOI 10.34759/trd-2022-122-16
  6. Likhachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. XVI Mezhdunarodnaya nauchno-metodicheskaya konferentsiya «Informatika: problemy, metodologiya, tekhnologii»: sbornik trudov. Voronezh, Izd-vo Nauchno-issledovatel’skie publikatsii, 2016, pp. 179 — 184.
  7. Sosulin Yu.G. Teoreticheskie osnovy radiolokatsii i radionavigatsii (Theoretical foundations of radar and radio navigation), Moscow, Radio i svyaz’, 1992, 303 p.
  8. Heunis S., Paichard Y., Inggs M. Passive radar using a software-defined radio platform and opensource software tools, IEEE National Radar Conference — Proceedings (RADAR), 2011, pp. 879-884. DOI:10.1109/RADAR.2011.5960663
  9. Soldatov A.L. Gagarinskie chteniya — 2020: tezisy dokladov. Moscow, Izd-vo MAI, 2020, pp. 647-648.
  10. Sel’vesyuk N.I., Veselov Yu.G., Gaidenkov A.V., Ostrovskii A.S. Trudy MAI, 2018, no 103. URL: https://trudymai.ru/eng/published.php?ID=100782
  11. Kharchenko V.P., Kosenko G.G., Kukush A.G. Radioelektronika, 1994, no. 3, pp. 52–59.
  12. Fadeev E.V. Vestnik RAEN, 2021, vol. 21, no. 4, pp. 11-19. DOI: 10.52531/1682-1696-2021-21-4-11-19
  13. Smirnov Yu.A. Radiotekhnicheskaya razvedka (Electronic intelligence), Moscow, Voennoe izd-vo, 2001, 456 p.
  14. Biryukov I.D. 21 mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika»: tezisy dokladov. Moscow, Izd-vo «Pero», 2022, pp. 282-284.
  15. Biryukov I.D., Buchuchan P.V., Timoshenko P.I. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii, 2020, vol. 12, pp. 517-529. DOI: 10.17725/rensit.2020.12.517
  16. Biryukov I.D., Silin S.I. XIII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Radiolokatsiya i radiosvyaz’»: sbornik trudov, Moscow, IRE im. V.A. Kotel’nikova RAN, 2019, pp. 133-137.
  17. Kupriyanov A.I., Sakharov A.V. Teoreticheskie osnovy radioelektronnoi bor’by (Theoretical foundations of electronic warfare), Moscow, Vuzovskaya kniga, 2007, 356 p.
  18. Oreshkin V.I., Meleshin Yu.M., Tsvetkov V.K. Trudy MAI, 2021, no. 120. URL: http://trudymai.ru/eng/published.php?ID=161424. DOI: 10.34759/trd-2021-120-10
  19. Podstrigaev A.S., Smolyakov A.V. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165560. DOI 10.34759/trd-2022-123-15
  20. Podstrigaev A.S., Smolyakov A.V. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162661. DOI 10.34759/trd-2021-121-14
  21. Repin V.G, Tartakovskii G.P. Statisticheskii sintez pri apriornoi neopredelennosti i adaptatsiya informatsionnykh system (Statistical synthesis under a priori uncertainty and adaptation of information systems), Moscow, Sovetskoe radio, 1977, 432 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход